Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework

In this paper, we propose a semi-implicit approach for the time discretization of the Navier–Stokes equations with Variational Multiscale-Large Eddy Simulation turbulence modeling (VMS-LES). For the spatial approximation of the problem, we use the Finite Element method, while we employ the Backward Differentiation Formulas (BDF) for the time discretization. We treat the nonlinear terms arising in the variational formulation of the problem with a semi-implicit approach leading to a linear system associated to the fully discrete problem which needs to be assembled and solved only once at each discrete time instance. We solve this linear system by means of the GMRES method by employing a multigrid (ML) right preconditioner for the parallel setting. We validate the proposed fully discrete scheme towards the benchmark problem of the flow past a squared cylinder at high Reynolds number and we show the computational efficiency and scalability results of the solver in a High Performance Computing framework.

[1]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[2]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[3]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[4]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[5]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[6]  Charbel Farhat,et al.  Computation of unsteady viscous flows around moving bodies using the k–ε turbulence model on unstructured dynamic grids , 2000 .

[7]  Wolfgang A. Wall,et al.  Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow , 2010 .

[8]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[9]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[10]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[11]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[12]  M. Kronbichler,et al.  An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow , 2010 .

[13]  François E. Cellier,et al.  Continuous System Simulation , 2006 .

[14]  Shmuel Einav,et al.  A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder , 1995, Journal of Fluid Mechanics.

[15]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[16]  NICLAS JANSSON,et al.  Framework for Massively Parallel Adaptive Finite Element Computational Fluid Dynamics on Tetrahedral Meshes , 2012, SIAM J. Sci. Comput..

[17]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[18]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[19]  Santiago Badia,et al.  Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows , 2015 .

[20]  Johan Hoffman,et al.  Computation of Mean Drag for Bluff Body Problems Using Adaptive DNS/LES , 2005, SIAM J. Sci. Comput..

[21]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[22]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[23]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[24]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[25]  Joel H. Ferziger,et al.  Status of Large Eddy Simulation: Results of a Workshop , 1997 .

[26]  L. Davidson,et al.  Large Eddy Simulation of Flow Past a Square Cylinder: Comparison of Different Subgrid Scale Models , 2000 .

[27]  Luca Dedè,et al.  Optimal flow control for Navier–Stokes equations: drag minimization , 2007 .

[28]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[29]  J. Miller Numerical Analysis , 1966, Nature.

[30]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[31]  R. Codina Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .

[32]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[33]  Arif Masud,et al.  A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations , 2009 .

[34]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[35]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[36]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[37]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[38]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[39]  E. D. Obasaju,et al.  An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders , 1982, Journal of Fluid Mechanics.

[40]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[41]  Tayfun E. Tezduyar,et al.  Stabilization Parameters in SUPG and PSPG Formulations , 2003 .

[42]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[43]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[44]  Gábor Janiga,et al.  Increasing the efficiency of postprocessing for turbulent reacting flows , 2009 .

[45]  C. W. Gear,et al.  Simultaneous Numerical Solution of Differential-Algebraic Equations , 1971 .

[46]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[47]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[48]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[49]  Paola Gervasio,et al.  Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations , 2006, J. Comput. Phys..

[50]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[51]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[52]  Rolf Dieter Grigorieff,et al.  Time Discretisation of Parabolic Problems with the Variable 3-Step BDF , 2002 .