Strength and regulation without transcription factors: lessons from bacterial rRNA promoters.

[1]  S. Aiyar,et al.  Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Gourse,et al.  Identification of an UP element consensus sequence for bacterial promoters. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Gourse,et al.  RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. , 1998, Journal of molecular biology.

[4]  S. Busby,et al.  Transcription activation at promoters carrying tandem DNA sites for the Escherichia coli cyclic AMP receptor protein: organisation of the RNA polymerase alpha subunits. , 1998, Journal of molecular biology.

[5]  S. Aiyar,et al.  Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase a subunit (A-tract DNAyDNA curvatureyUP element) , 1998 .

[6]  C. Turnbough,et al.  Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. , 1997, Science.

[7]  R. Ebright,et al.  RNA Polymerase β′ Subunit: A Target of DNA Binding-Independent Activation , 1997, Science.

[8]  R. Gourse,et al.  Molecular anatomy of a transcription activation patch: FIS–RNA polymerase interactions at the Escherichia coli rrnB P1 promoter , 1997, The EMBO journal.

[9]  K. Murakami,et al.  Transcription factor recognition surface on the RNA polymerase alpha subunit is involved in contact with the DNA enhancer element. , 1996, The EMBO journal.

[10]  R. Gourse,et al.  rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli. , 1996, Annual Review of Microbiology.

[11]  R. Ebright,et al.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. , 1996, Genes & development.

[12]  M. Shirakawa,et al.  Solution Structure of the Activator Contact Domain of the RNA Polymerase α Subunit , 1995, Science.

[13]  C. Condon,et al.  Control of rRNA transcription in Escherichia coli. , 1995, Microbiological reviews.

[14]  A. Galizzi,et al.  Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the sigma D RNA polymerase requires an upstream promoter element. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Gourse,et al.  Stringent control and growth-rate-dependent control have nonidentical promoter sequence requirements. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Ebright,et al.  Domain organization of RNA polymerase α subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding , 1994, Cell.

[17]  R. Gourse,et al.  Growth rate-dependent control of the rrnB P1 core promoter in Escherichia coli , 1994, Journal of bacteriology.

[18]  R. Gourse,et al.  Localization of the intrinsically bent DNA region upstream of the E.coli rrnB P1 promoter. , 1994, Nucleic acids research.

[19]  M. Susskind,et al.  Target of the transcriptional activation function of phage lambda cI protein. , 1994, Science.

[20]  R. Gourse,et al.  Two modes of transcription initiation in vitro at the rrnB P1 promoter of Escherichia coli. , 1993, The Journal of biological chemistry.

[21]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB P1 promoter in vitro. , 1991, Journal of molecular biology.

[22]  D. Crothers,et al.  Synthetic DNA bending sequences increase the rate of in vitro transcription initiation at the Escherichia coli lac promoter. , 1991, Journal of molecular biology.

[23]  R. Gourse,et al.  Guanosine 3'-diphosphate 5'-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Gourse,et al.  Identification of promoter mutants defective in growth-rate-dependent regulation of rRNA transcription in Escherichia coli , 1989, Journal of bacteriology.

[25]  R. Gourse,et al.  Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants , 1989, Journal of bacteriology.

[26]  R. Gourse Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. , 1988, Nucleic acids research.

[27]  S. Busby,et al.  RNA polymerase makes important contacts upstream from base pair -49 at the Escherichia coli galactose operon P1 promoter. , 1987, Gene.

[28]  R. Gourse,et al.  DNA determinants of rRNA synthesis in E. coli: Growth rate dependent regulation, feedback inhibition, upstream activation, antitermination , 1986, Cell.

[29]  R. Losick,et al.  Deletion analysis of a complex promoter for a developmentally regulated gene from Bacillus subtilis. , 1983, Journal of molecular biology.

[30]  R. Gourse,et al.  Expression of rRNA and tRNA genes in Escherichia coli: Evidence for feedback regulation by products of rRNA operons , 1983, Cell.

[31]  H. A. Boer,et al.  Growth-rate-dependent regulation of ribosome synthesis in E. coli: Expression of the lacZ and galK genes fused to ribosomal promoters , 1981, Cell.

[32]  R. Losick,et al.  Promoter for a developmentally regulated gene in Bacillus subtilis , 1981, Cell.