Flamelet modelling of soot formation in diffusion flames

In this work the steady and unsteady flamelet models have been applied to soot formation in laminar and turbulent diffusion flames. The aim was to study how different model parameters affect soot formation in diffusion flames. It was shown that certain assumptions are more crucial in laminar diffusion flames than in turbulent ones. The soot formation in turbulent diffusion flames is more sensitive to the surface dependence of the particle and altering the active site parameter, than in laminar flames. This is due to the fact that the flame is laminar and the turbulent mixing, which supplies the particle with radicals, does not affect the process. The active site parameter decreases in the absence of radicals. The modelling of complex diffusivity of all species is more relevant in laminar diffusion flames than in turbulent diffusion flames. All transient effects investigated in this work were shown to affect soot formation, which is itself transient. It was shown that these effects are more relevant for laminar fames than for turbulent flames. The steady flamelet model allows the inclusion of many transient processes and thereby loses in accuracy compared with the unsteady model. Finally, the process of the formation of agglomerates was included in the unsteady model and it was shown that the soot volume fraction is affected when this process is considered. (Less)

[1]  A. L. Martínez,et al.  The structure of diffusion flames , 1991 .

[2]  N. Peters Laminar diffusion flamelet models in non-premixed turbulent combustion , 1984 .

[3]  B. L. Su Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets , 1999 .

[4]  George W. Mulholland,et al.  Light scattering from simulated smoke agglomerates , 1988 .

[5]  Thierry Poinsot,et al.  Quenching processes and premixed turbulent combustion diagrams , 1991, Journal of Fluid Mechanics.

[6]  W. H. Walton The Mechanics of Aerosols , 1966 .

[7]  M. Jacobson Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming , 2002 .

[8]  J. Heywood,et al.  A Fundamentally-Based Stochastic Mixing Model Method for Predicting NO and Soot Emissions from Direct Injection Diesel Engines , 1988 .

[9]  Norberto Fueyo,et al.  An economical strategy for storage of chemical kinetics: Fitting in situ adaptive tabulation with artificial neural networks , 2000 .

[10]  Ian M. Kennedy,et al.  Models of soot formation and oxidation , 1997 .

[11]  Allan Gut,et al.  An intermediate course in probability , 1995 .

[12]  Ishwar K. Puri,et al.  A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air , 1988 .

[13]  Laszlo Fuchs,et al.  Sensitivity study of turbulent reacting flow modeling in gas turbine combustors , 1994 .

[15]  R. J. Hall,et al.  Fractal properties of soot agglomerates , 1991 .

[16]  H. Bockhorn,et al.  Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons , 2000 .

[17]  Henning Bockhorn,et al.  Soot Formation in Combustion: Mechanisms and Models , 1994 .

[18]  Y. Tai,et al.  Micromachined membrane particle filters , 1999 .

[19]  P. A. Tesner,et al.  Kinetics of dispersed carbon formation , 1971 .

[20]  G. M. Faeth,et al.  Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H , 2001 .

[21]  K. M. Leung,et al.  A simplified reaction mechanism for soot formation in nonpremixed flames , 1991 .

[22]  Michel P. Bonin,et al.  Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications , 1996 .

[23]  R. Fletcher,et al.  Laser microprobe analysis of soot precursor particles and carbonaceous soot , 1995 .

[24]  P. A. Rubini,et al.  CFD prediction of coupled radiation heat transfer and soot production in turbulent flames , 1996 .

[25]  Judith C. Chow,et al.  Optical properties of the San Joaquin Valley aerosol collected during the 1995 integrated monitoring study , 1999 .

[26]  Tiago L. Farias,et al.  Fractal and projected structure properties of soot aggregates , 1995 .

[27]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[28]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[29]  Hung V. Nguyen,et al.  The Mobility and Structure of Aerosol Agglomerates , 1993 .

[30]  Fumiaki Takahashi,et al.  Sooting Correlations for Premixed Flames , 1984 .

[31]  J. S. Kim,et al.  Structures of Flow and Mixture-Fraction Fields for Counterflow Diffusion Flames with Small Stoichiometric Mixture Fractions , 1993, SIAM J. Appl. Math..

[32]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[33]  Kuang C. Lin,et al.  Soot nucleation and growth in acetylene air laminar coflowing jet diffusion flames , 1996 .

[34]  P. Saffman,et al.  A model for inhomogeneous turbulent flow , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  C. McEnally,et al.  Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame , 1998 .

[36]  J. H. Miller The kinetics of polynuclear aromatic hydrocarbon agglomeration in flames , 1991 .

[37]  M. Fairweather,et al.  Predictions of radiative transfer from a turbulent reacting jet in a cross-wind , 1992 .

[38]  G. H. Markstein,et al.  Upward turbulent fire spread and burning of fuel surface , 1975 .

[39]  Stephen B. Pope,et al.  Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames , 2000 .

[40]  S. Pope Advances in PDF Methods for Turbulent Reactive Flows , 2004 .

[41]  G. W. Mulholland,et al.  Global Soot Growth Model , 1986 .

[42]  Chul Han Kim,et al.  Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1–1.0 atm , 2004 .

[43]  M. Fairweather,et al.  Predictions of soot formation in turbulent, non-premixed propane flames , 1992 .

[44]  J. B. Moss,et al.  Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames , 1991 .

[45]  Jian Li,et al.  A technique for determination of black carbon in cellulose filters , 2002 .

[46]  Jack B. Howard,et al.  Composition profiles and reaction mechanisms in a near-sooting premixed benzene/oxygen/argon flame , 1981 .

[47]  D. E. Rosner,et al.  “Heavy” species Ludwig–Soret transport effects in air-breathing combustion , 2000 .

[48]  Takashi Kashiwagi,et al.  Comparisons of the soot volume fraction using gravimetric and light extinction techniques , 1995 .

[49]  E. M. Bulewicz Combustion , 1964, Nature.

[50]  J. B. Moss,et al.  Modelling sooting turbulent jet flames using an extended flamelet technique , 1995 .

[51]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[52]  Stephen J. Harris,et al.  The Coagulation of Soot Particles with van der Waals Forces , 1988 .

[53]  Jörgen Carlsson,et al.  Computational strategies in flame-spread modelling involving wooden surfaces -An evaluation study , 2003 .

[54]  H. F. Calcote,et al.  Effect of molecular structure on incipient soot formation , 1983 .

[55]  D. Wilcox Turbulence modeling for CFD , 1993 .

[56]  R. J. Gill,et al.  Estimation of Soot Thresholds for Fuel Mixtures , 1984 .

[57]  W. K. Bushe,et al.  Large eddy simulation of a turbulent reacting jet with conditional source-term estimation , 2001 .

[58]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[59]  Wavelets‐Galerkin scheme for a Stokes problem , 2004 .

[60]  N. Peters,et al.  Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames , 1998 .

[61]  Bjørn H. Hjertager,et al.  Effects of turbulent structure and local concentrations on soot formation and combustion in C2H2 diffusion flames , 1979 .

[62]  D. E. Rosner,et al.  Size- and Structure-lnsensitivity of the Thermophoretic Transport of Aggregated “Soot” Particles in Gases , 1991 .

[63]  D. Jensen Prediction of soot formation rates: a new approach , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[64]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[65]  James W. Gentry,et al.  Structural analysis of soot agglomerates , 1987 .

[66]  Michael Frenklach,et al.  Reduction of chemical reaction models , 1991 .

[67]  Kermit C. Smyth,et al.  Calculations of the dimerization of aromatic hydrocarbons: Implications for soot formation , 1985 .

[68]  J. Lahaye,et al.  Morphology and Internal Structure of Soot and Carbon Blacks , 1981 .

[69]  J. T. Mckinnon,et al.  The roles of pah and acetylene in soot nucleation and growth , 1992 .

[70]  V. M. Tikhomirov,et al.  Equations of Turbulent Motion in an Incompressible Fluid , 1991 .

[71]  C. Sorensen,et al.  In situ optical structure factor measurements of an aggregating soot aerosol , 1988 .

[72]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[73]  H. Baum,et al.  Simulation of aerosol agglomeration in the free molecular and continuum flow regimes , 1986 .

[74]  S. Gollahalli,et al.  Measurement of OH concentrations in turbulent diffusion flames using combined LIF and Raman spectroscopy , 2000, Collection of Technical Papers. 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) (Cat. No.00CH37022).

[75]  Constantine M. Megaridis,et al.  Soot aerosol dynamics in a laminar ethylene diffusion flame , 1989 .

[76]  F. Xu,et al.  Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure , 2003 .

[77]  D. E. Rosner,et al.  Fractal Morphology Analysis of Combustion-Generated Aggregates Using Angular Light Scattering and Electron Microscope Images , 1995 .

[78]  M. Frenklach,et al.  Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames , 1998 .

[79]  Michael Frenklach,et al.  Detailed Mechanism and Modeling of Soot Particle Formation , 1994 .

[80]  D. Dockery,et al.  Epidemiologic evidence of cardiovascular effects of particulate air pollution. , 2001, Environmental health perspectives.

[81]  Noel T. Clemens,et al.  Measurements of the three-dimensional scalar dissipation rate field in gas-phase planar turbulent jets , 1997 .

[82]  Arthur H. Lefebvre,et al.  Flame radiation in gas turbine combustion chambers , 1984 .

[83]  J. Walewski,et al.  Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy , 2003 .

[84]  P. A. Tesner,et al.  The formation of soot from aromatic hydrocarbons in diffusion flames of hydrocarbon-hydrogen mixtures , 1971 .

[85]  I. Gorst Survey of energy resources , 1985 .

[86]  Denis Veynante,et al.  Turbulent combustion modeling , 2002, VKI Lecture Series.

[87]  Stephen J. Harris,et al.  Surface Growth of Soot Particles in Premixed Ethylene/Air Flames , 1983 .

[88]  D. Marran,et al.  Mixture fraction imaging in a lifted methane jet flame , 1996 .

[89]  J. Warnatz,et al.  A re-evaluation of the means used to calculate transport properties of reacting flows , 1998 .

[90]  S. C. Graham The modelling of the growth of soot particles during the pyrolysis and partial oxidation of aromatic hydrocarbons , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[91]  H. Semerjian,et al.  Analysis of light scattering from soot using optical cross sections for aggregates , 1991 .

[92]  E. Feil,et al.  Climate Effects of Black Carbon Aerosols in China and India , 2002 .

[93]  Brian R. Smith,et al.  A near wall model for the k - l two equation turbulence model , 1994 .

[94]  L. Orloff,et al.  The role of buoyancy direction and radiation in turbulent diffusion flames on surfaces , 1975 .

[95]  P. Bengtsson,et al.  Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration , 2001 .

[96]  Claus Hindsgaul,et al.  Physical and chemical characterization of particles in producer gas from wood chips , 2000 .

[97]  D. Spalding,et al.  INTRODUCTION TO COMBUSTION , 1979 .

[98]  T. De Loggio,et al.  New directions in centrifuging , 1994 .

[99]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[100]  S. H. Kim,et al.  Second-order conditional moment closure modeling of local extinction and reignition in turbulent non-premixed hydrocarbon flames , 2002 .

[101]  C. F. Curtiss,et al.  Transport Properties of Multicomponent Gas Mixtures , 1949 .

[102]  P. R. Westmoreland Thermochemistry and Kinetics of C2H3+ 02 Reactions , 1992 .

[103]  Sotiris E. Pratsinis,et al.  A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering , 1993 .

[104]  J. Lahaye,et al.  Soot in combustion systems and its toxic properties , 1983 .

[105]  C. H. Priddin,et al.  The calculation of turbulent boundary layers on spinning and curved surfaces , 1977 .

[106]  H. Pitsch,et al.  Modeling extinction and reignition in turbulent nonpremixed combustion using a doubly-conditional moment closure approach , 2001 .

[107]  S. Harris,et al.  A picture of soot particle inception , 1989 .

[108]  N. Peters The turbulent burning velocity for large-scale and small-scale turbulence , 1999, Journal of Fluid Mechanics.

[109]  Christopher M. Sorensen,et al.  Analysis of Fractal Cluster Morphology Parameters: Structural Coefficient and Density Autocorrelation Function Cutoff , 1995 .

[110]  Mnv,et al.  On health risks of ambient PM in theNetherlands , 2002 .

[111]  Sharath S. Girimaji,et al.  On the modeling of scalar diffusion in isotropic turbulence , 1992 .