Commutative rings whose finitely generated modules are direct sums of cyclics
暂无分享,去创建一个
[1] P. Vámos. The Decomposition of Finitely Generated Modules and Fractionally Self‐Injective Rings , 1977 .
[2] P. Vámos. Multiply Maximally Complete Fields , 1975 .
[3] S. Wiegand. Semilocal domains whose finitely generated modules are direct sums of cyclics , 1975 .
[4] S. Wiegand. Locally maximal Bezout domains , 1975 .
[5] T. Shores,et al. Rings whose finitely generated modules are direct sums of cyclics , 1974 .
[6] Willy Brandal. Almost maximal integral domains and finitely generated modules , 1973 .
[7] Eben Matlis. Rings of type I , 1972 .
[8] D. Gill. Almost Maximal Valuation Rings , 1971 .
[9] Melvin Hochster,et al. Prime ideal structure in commutative rings , 1969 .
[10] N. Hindman. ON THE EXISTENCE OF c-POINTS IN flN\N , 1969 .
[11] L. Levy,et al. Pre-self-injective rings , 1969 .
[12] R. Pierce. Modules over Commutative Regular Rings , 1967 .
[13] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[14] W. Rudin. Homogeneity Problems in the Theory of Čech Compactifications , 1956 .
[15] I. Kaplansky. Modules over Dedekind rings and valuation rings , 1952 .
[16] Otto F. G. Schilling,et al. The Theory of Valuations , 1950 .