Tetranuclear platinum phosphido complexes with different structures.
暂无分享,去创建一个
The addition of [NBu4]Br or [NBu4][BH4] to solutions of [Pt4(mu-PPh2)4(C6F5)4(CO)2] yields the complexes [NBu4]2[Pt4(mu-PPh2)4(mu-X)2(C6F5)4] (X=Br, H,) in which the two CO groups have been replaced by two anionic, bridging X ligands. The total valence electron counts are 64 and 60, respectively; thus, complex does not require Pt-Pt bonds, while two metal-metal bonds are present in, as their NMR spectra confirm. Also, the NMR spectra indicate a nonsymmetrical "Pt(mu-PPh2)2Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)(mu-X)Pt" disposition for and. Treatment of with HX (X=Cl, Br) yields the complexes [NBu4]2[Pt4(mu-PPh2)4(mu-H)2(C6F5)3X] (X=Cl, Br,). These complexes react with [Ag(OClO 3)PPh3] with displacement of the halide and formation of [NBu4][Pt4(mu-PPh2)4(mu-H)2(C6F5)3PPh3]. Complexes maintain the same basic skeleton as, with two Pt-Pt bonds. Complex is, however, an isomer of the symmetric [NBu4]2[{(C6F5)2Pt(mu-PPh2)2Pt(mu-Br)}2], which has been prepared by a metathetical process from the well-known [NBu4]2[{(C6F5)2Pt(mu-PPh2)2Pt(mu-Cl)}2]. The comparison of the X-ray structures of and confirms the different disposition of the bridging ligands, and their main structural differences seem to be related to the size of Br- and its position in the skeleton.