Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae

Rhizobiales and related orders of Alphaproteobacteria comprise several genera of nodule-inducing symbiotic bacteria associated with plant roots. Here we describe the genome and the metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a member of a new candidate genus closely related to Rhizobiales and found in association with cultures of the filamentous brown algal model Ectocarpus. The “Ca. P. ectocarpi” genome encodes numerous metabolic pathways that may be relevant for this bacterium to interact with algae. Notably, it possesses a large set of glycoside hydrolases and transporters, which may serve to process and assimilate algal metabolites. It also harbors several proteins likely to be involved in the synthesis of algal hormones such as auxins and cytokinins, as well as the vitamins pyridoxine, biotin, and thiamine. As of today, “Ca. P. ectocarpi” has not been successfully cultured, and identical 16S rDNA sequences have been found exclusively associated with Ectocarpus. However, related sequences (≥97% identity) have also been detected free-living and in a Fucus vesiculosus microbiome barcoding project, indicating that the candidate genus “Phaeomarinobacter” may comprise several species, which may colonize different niches.

[1]  W. Moore,et al.  Taxonomic Note : A Place for DNA-DNA Reassociation and 16 s rRNA Sequence Analysis in the Present Species Definition in , 2022 .

[2]  S. Chenivesse,et al.  ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus[W] , 2011, Plant Cell.

[3]  Peixiang Ni,et al.  Complete Genome Sequence of Pelagibacterium halotolerans B2T , 2012, Journal of bacteriology.

[4]  P. Rouzé,et al.  Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress , 2009, Genome Biology.

[5]  B. Bartel,et al.  Auxin: regulation, action, and interaction. , 2005, Annals of botany.

[6]  M. Pedersen Marine Brown Algae Requiring Vitamin B12 , 1969 .

[7]  Yong‐Su Jin,et al.  Marine macroalgae: an untapped resource for producing fuels and chemicals. , 2013, Trends in biotechnology.

[8]  Ykä Helariutta,et al.  Crossing paths: cytokinin signalling and crosstalk , 2013, Development.

[9]  M. Verkhovsky,et al.  Na+-translocating NADH: Quinone oxidoreductase: Progress achieved and prospects of investigations , 2005, Biochemistry (Moscow).

[10]  T. Tonon,et al.  A metabolic approach to study algal–bacterial interactions in changing environments , 2014, Molecular ecology.

[11]  M. Pedersen Ectocarpus fasciculatus: Marine Brown Alga requiring Kinetin , 1968, Nature.

[12]  Catriona MacCallum,et al.  Global Ocean Sampling Collection , 2007, PLoS biology.

[13]  Naryttza N. Diaz,et al.  The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes , 2005, Nucleic acids research.

[14]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[15]  K. Zengler,et al.  Cultivating the uncultured , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Corinne Da Silva,et al.  The Ectocarpus genome and the independent evolution of multicellularity in brown algae , 2010, Nature.

[17]  B. Kloareg,et al.  Evolution and diversity of plant cell walls: from algae to flowering plants. , 2011, Annual review of plant biology.

[18]  Y. Kamiya,et al.  Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis , 2009, Proceedings of the National Academy of Sciences.

[19]  Bela H. Buck,et al.  The genus Laminaria sensu lato : recent insights and developments , 2008 .

[20]  Richard C. Starr,et al.  UTEX—THE CULTURE COLLECTION OF ALGAE AT THE UNIVERSITY OF TEXAS AT AUSTIN 1993 LIST OF CULTURES 1 , 1993 .

[21]  K. Ljung,et al.  Auxin Metabolism and Function in the Multicellular Brown Alga Ectocarpus siliculosus1[W] , 2010, Plant Physiology.

[22]  Allyson M. MacLean,et al.  Genomes of the Symbiotic Nitrogen-Fixing Bacteria of Legumes1 , 2007, Plant Physiology.

[23]  T. Tonon,et al.  Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus , 2008, BMC Molecular Biology.

[24]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[25]  Allyson M. MacLean,et al.  Update on Genomes of Nodule Bacteria Genomes of the Symbiotic Nitrogen-Fixing Bacteria of Legumes , 2007 .

[26]  T. Tonon,et al.  The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. , 2010, The New phytologist.

[27]  B. Santelices The discovery of kelp forests in deep-water habitats of tropical regions , 2007, Proceedings of the National Academy of Sciences.

[28]  J. Gogarten,et al.  Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin B12 , 2013, Applied and Environmental Microbiology.

[29]  J. Argüelles,et al.  Physiological roles of trehalose in bacteria and yeasts: a comparative analysis , 2000, Archives of Microbiology.

[30]  T. Tonon,et al.  Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). , 2012, The Plant journal : for cell and molecular biology.

[31]  D. Renault,et al.  Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. , 2011, Plant, cell & environment.

[32]  J. Noel,et al.  Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1 , 2013, Nature chemical biology.

[33]  H. Hennecke,et al.  The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase , 1996, Archives of Microbiology.

[34]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[35]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[36]  Susana M. Coelho,et al.  A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. , 2010, The New phytologist.

[37]  J. Imhoff,et al.  Chemical interactions between marine macroalgae and bacteria , 2010 .

[38]  M. Argandoña,et al.  Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli , 2012, BMC Microbiology.

[39]  M. Kowalska,et al.  Evolution of cytokinin biosynthesis and degradation. , 2011, Journal of experimental botany.

[41]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[42]  Pamela J. B. Brown,et al.  Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria , 2011, Journal of bacteriology.

[43]  M. Pedersen Identification of a Cytokinin, 6‐(3 Methyl‐2‐butenylamino) purine, in Sea Water and the Effect of Cytokinins on Brown Algae , 1973 .

[44]  Susana M. Coelho,et al.  Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. , 2007, The New phytologist.

[45]  Raymond E Goldstein,et al.  Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. , 2011, Molecular biology and evolution.

[46]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[47]  J. Tiedje,et al.  Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy , 2007, Applied and Environmental Microbiology.

[48]  Renzo Kottmann,et al.  Megx.net: integrated database resource for marine ecological genomics , 2009, Nucleic Acids Res..

[49]  T. Schmülling,et al.  Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. , 2010, Molecular plant-microbe interactions : MPMI.

[50]  Yonghong Wang,et al.  Arabidopsis indole synthase, a homolog of tryptophan synthase alpha, is an enzyme involved in the Trp-independent indole-containing metabolite biosynthesis. , 2008, Journal of integrative plant biology.

[51]  D. Scornet,et al.  PROPOSAL OF ECTOCARPUS SILICULOSUS (ECTOCARPALES, PHAEOPHYCEAE) AS A MODEL ORGANISM FOR BROWN ALGAL GENETICS AND GENOMICS 1,2 , 2004 .

[52]  N. Smirnoff THE FUNCTION AND METABOLISM OF ASCORBIC ACID IN PLANTS , 1996 .

[53]  S. Dobretsov,et al.  The Second Skin: Ecological Role of Epibiotic Biofilms on Marine Organisms , 2012, Front. Microbio..

[54]  S. Ball,et al.  From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. , 2003, Annual review of plant biology.

[55]  J. Glazebrook,et al.  Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[W] , 2007, The Plant Cell Online.

[56]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[57]  David S. Wishart,et al.  Circular genome visualization and exploration using CGView , 2005, Bioinform..

[58]  H. Schlesner Planctomyces brasiliensis sp. nov., a Halotolerant Bacterium from a Salt Pit , 1989 .

[59]  E. Karlberg,et al.  Computational inference of scenarios for alpha-proteobacterial genome evolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  D. Valentine,et al.  Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill , 2011, Proceedings of the National Academy of Sciences.

[61]  Harald R. Gruber-Vodicka,et al.  Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms , 2011, Proceedings of the National Academy of Sciences.

[62]  T. Tonon,et al.  Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. , 2010, The New phytologist.

[63]  F. Leliaert,et al.  What we can learn from sushi: a review on seaweed-bacterial associations. , 2013, FEMS microbiology ecology.

[64]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[65]  L. Pennacchio,et al.  Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1T) , 2011, Standards in genomic sciences.

[66]  P. Poole,et al.  The plant microbiome , 2013, Genome Biology.

[67]  Liping Wang,et al.  Parvibaculum indicum sp. nov., isolated from deep-sea water. , 2011, International journal of systematic and evolutionary microbiology.

[68]  R. Amann,et al.  Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom , 2012, Science.

[69]  Gut microbiota: Married to our gut microbiota , 2012, Nature Reviews Gastroenterology &Hepatology.

[70]  T. Tonon,et al.  Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. , 2010, The New phytologist.

[71]  J. Argüelles Physiological roles of trehalose in bacteria and yeasts: a comparative analysis , 2000 .

[72]  C. Cruaud,et al.  A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): Investigating the evolutionary nature of the "brown algal crown radiation". , 2010, Molecular phylogenetics and evolution.

[73]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.