Narrow low-frequency spectrum and heat management by thermocrystals.

By transforming heat flux from particle to wave phonon transport, we introduce a new class of engineered material to control thermal conduction. We show that rationally designed nanostructured alloys can lead to a fundamental new approach for thermal management, guiding heat as photonic and phononic crystals guide light and sound, respectively. Novel applications for these materials include heat waveguides, thermal lattices, heat imaging, thermo-optics, thermal diodes, and thermal cloaking.

[1]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[2]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[3]  M. Maldovan Thermal energy transport model for macro-to-nanograin polycrystalline semiconductors , 2011 .

[4]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[5]  Andrew G. Glen,et al.  APPL , 2001 .

[6]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[7]  B. Liang,et al.  An acoustic rectifier. , 2010, Nature materials.

[8]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 1952 .

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[11]  N. Mingo,et al.  Diameter dependence of SiGe nanowire thermal conductivity , 2010, 1104.1570.

[12]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[13]  M. Maldovan Micro to nano scale thermal energy conduction in semiconductor thin films , 2011 .

[14]  Heon-Jin Choi,et al.  Thermal conductivities of Si1-xGex nanowires with different germanium concentrations and diameters , 2010 .

[15]  R. Venkatasubramanian Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures , 2000 .

[16]  M. Maldovan Thermal conductivity of semiconductor nanowires from micro to nano length scales , 2012 .

[17]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[18]  Daniel Torrent,et al.  Acoustic cloaking in two dimensions: a feasible approach , 2008 .

[19]  Yuki Sato,et al.  Heat flux manipulation with engineered thermal materials. , 2012, Physical review letters.

[20]  O. Bilal,et al.  Ultrawide phononic band gap for combined in-plane and out-of-plane waves. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[22]  Martin Maldovan,et al.  Transition between ballistic and diffusive heat transport regimes in silicon materials , 2012 .

[23]  Zhengyou Liu,et al.  Negative refraction of acoustic waves in two-dimensional phononic crystals , 2004 .

[24]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[25]  Numerical analysis of negative refraction of transverse waves in an elastic material , 2008 .

[26]  B. Abeles Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures , 1963 .

[27]  Klaus Fuchs,et al.  The conductivity of thin metallic films according to the electron theory of metals , 1938, Mathematical Proceedings of the Cambridge Philosophical Society.

[28]  Xu Ni,et al.  Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. , 2011, Physical review letters.

[29]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[30]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[31]  Edwin L. Thomas,et al.  Simultaneous localization of photons and phonons in two-dimensional periodic structures , 2006 .

[32]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[33]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[34]  Hannu Mutka,et al.  Breakdown of phonon glass paradigm in La- and Ce-filled Fe4Sb12 skutterudites. , 2008, Nature materials.

[35]  Abdelkrim Khelif,et al.  Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials , 2003 .

[36]  Peng Wang,et al.  A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte , 2003, Nature materials.

[37]  Gang Chen,et al.  Partially coherent phonon heat conduction in superlattices , 2003 .

[38]  E. Thomas,et al.  Simultaneous complete elastic and electromagnetic band gaps in periodic structures , 2006 .

[39]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[40]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[41]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[42]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[43]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[44]  Mahan,et al.  Minimum thermal conductivity of superlattices , 2000, Physical review letters.

[45]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[46]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[49]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.