Dissolved organic carbon and nitrogen in precipitation, throughfall, soil solution, and stream water of the tropical highlands in northern Thailand

Dissolved organic matter (DOM) is important for the cycling and transport of carbon (C) and nitrogen (N) in soil. In temperate forest soils, dissolved organic N (DON) partly escapes mineralization and is mobile, promoting loss of N via leaching. Little information is available comparing DOC and DON dynamics under tropical conditions. Here, mineralization is more rapid, and the demand of the vegetation for nutrients is larger, thus, leaching of DON could be small. We studied concentrations of DOC and DON during the rainy seasons 1998–2001 in precipitation, canopy throughfall, pore water in the mineral soil at 5, 15, 30, and 80 cm depth, and stream water under different land-use systems representative of the highlands of northern Thailand. In addition, we determined the distribution of organic C (OC) and N (ON) between two operationally defined fractions of DOM. Samples were collected in small water catchments including a cultivated cabbage field, a pine plantation, a secondary forest, and a primary forest. The mean concentrations of DOC and DON in bulk precipitation were 1.7 ± 0.2 and 0.2 ± 0.1 mg L–1, respectively, dominated by the hydrophilic fraction. The throughfall of the three forest sites became enriched up to three times in DOC in the hydrophobic fraction, but not in DON. Maximum concentrations of DOC and DON (7.9–13.9 mg C L–1 and 0.9–1.2 mg N L–1, respectively) were found in samples from lysimeters at 5 cm soil depth. Hydrophobic OC and hydrophilic ON compounds were released from the O layer and the upper mineral soil. Concentrations of OC and ON in mineral-soil solutions under the cabbage cultivation were elevated when compared with those under the forests. Similar to most temperate soils, the concentrations in the soil solution decreased with soil depth. The reduction of OC with depth was mainly due to the decrease of hydrophobic compounds. The changes in OC indicated the release of hydrophobic compounds poor in N in the forest canopy and the organic layers. These substances were removed from solution during passage through the mineral soil. In contrast, organic N related more to labile microbial-derived hydrophilic compounds. At least at the cabbage-cultivation site, mineralization seemed to contribute largely to the decrease of DOC and DON with depth, possibly because of increased microbial activity stimulated by the inorganic-N fertilization. Similar concentrations and compositions of OC and ON in subsoils and streams draining the forested catchments suggest soil control on stream DOM. The contribution of DON to total dissolved N in those streams ranged between 50% and 73%, underscoring the importance of DOM for the leaching of nutrients from forested areas. In summary, OC and ON showed differences in their dynamics in forest as well as in agricultural ecosystems. This was mainly due to the differing distribution of OC and ON between the more immobile hydrophobic and the more easily degradable hydrophilic fraction. Geloster organischer Kohlenstoff und Stickstoff in Freiland- und Bestandesniederschlag, der Bodenlosung sowie in primaren Vorflutern in der tropischen Bergregion Nord-Thailands Geloste organische Substanz (DOM) spielt eine entscheidende Rolle beim C- und N-Kreislauf und -transport im Boden. In Waldboden der gemasigten Zonen scheint geloster organischer N (DON) die mobilste N-Bindungsform darzustellen. Auch im Vergleich zum DOC ist DON leichter verlagerbar. Nur wenig ist jedoch uber die DOC- und DON-Dynamik unter tropischen Bedingungen bekannt. In dieser Studie wurden wahrend der Regenzeiten 1998–2001 die DOC- bzw. DON-Konzentrationen in Niederschlag, Bestandesniederschlag, Bodenlosung in 5, 15, 30 und 80 cm Tiefe und Abfluss kleiner Wassereinzugsgebiete in reprasentativen Landnutzungsformen des tropischen Berglands Nordthailands untersucht. Zusatzlich wurde die Verteilung von DOC und DON in zwei operational definierten DOM-Fraktionen bestimmt. Proben wurden auf einer Ackerflache (Kohlanbau), in einer Kiefernaufforstung, einem Sekundarwald und einem Primarwald genommen. Die mittleren DOC- und DON-Konzentrationen betrugen im Niederschlag 1.7 ± 0.2 bzw. 0.2 ± 0.1 mg L–1, wobei die hydrophile Fraktion dominierte. Der Bestandesniederschlag wies bis zu dreifach hohere DOC-Konzentrationen auf, vornehmlich in der hydrophoben Fraktion. Stickstoff lies dagegen keine Anreicherung erkennen. Die maximalen Konzentrationen (7.5–13.9 mg C L–1 und 0.9–1.2 mg N L–1) wurden in den Lysimeterproben aus 5 cm Bodentiefe gemessen. Die Freisetzung in den Auflagen und im obersten Mineralboden erfolgte bei C grostenteils in Form hydrophober Substanzen, wahrend bei Stickstoff die Zunahme der hydrophilen Fraktion entscheidend war. Wie in den Boden der gemasigten Breiten sanken die Konzentrationen mit zunehmender Bodentiefe. Hierbei wurde v. a. der hydrophobe DOM-Anteil in der Bodenlosung stark reduziert. Die Veranderung der DOC-Zusammensetzung im Kronenraum der Baume und in der Auflage zeigt, dass hier primar Substanzen der hydrophoben Fraktion, die N-arm sind, freigesetzt werden. Diese Substanzen werden im Mineralboden sorbiert und so der Bodenlosung entzogen. Im Gegensatz dazu ist DON mehr der labilen hydrophilen Fraktion zuzuordnen. Zumindest auf der Ackerflache mit Kohlanbau scheint auch Mineralisation einen Beitrag zur Abnahme der DOC- und DON-Konzentrationen zu leisten. Dies ist vermutlich Ergebnis einer Stimulation der mikrobiellen Aktivitat durch Mineral-N-Dungung. Die ahnlichen Konzentrationen an DOC und DON sowie deren ahnliche Verteilung auf DOM-Fraktionen in Unterboden und im Abfluss der Waldstandorte zeigen, dass hier Prozesse im Boden den DOM-Austrag bestimmen. Der DON-Anteil am Gesamt-N in den Bachlaufen der bewaldeten Einzugsgebiete liegt zwischen 50 und 73 %, was die Bedeutung von DOM fur den Nahrstoffaustrag aus Waldsystemen unterstreicht. Zusammenfassend zeigen DOC und DON Unterschiede in ihrer Dynamik sowohl unter Wald als auch unter Acker. Dies geht uberwiegend auf die unterschiedliche Verteilung auf die stark sorbierende hydrophobe bzw. die leicht zersetzbare hydrophile Fraktion zuruck.

[1]  J. Schimel,et al.  NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM , 2004 .

[2]  A. T. Kuiters,et al.  Water-soluble organic matter in forest soils , 1993, Plant and Soil.

[3]  W. Mulder,et al.  Water-soluble organic matter in forest soils , 1993, Plant and Soil.

[4]  F. Chapin,et al.  Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems , 2003 .

[5]  Chiung-Pin Liu,et al.  Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan , 2003 .

[6]  L. Hedin,et al.  Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds , 2002, Nature.

[7]  G. Guggenberger,et al.  Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany , 2001 .

[8]  Ji‐Hyung Park,et al.  Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests , 2001 .

[9]  A. Möller,et al.  Forms of organic C and P extracted from tropical soils as assessed by liquid-state 13C- and 31P-NMR spectroscopy , 2000 .

[10]  W. Zech,et al.  Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases , 2000 .

[11]  Ji‐Hyung Park,et al.  Controls on the dynamics of dissolved organic matter in soils: a review. , 2000 .

[12]  B. Michalzik,et al.  Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem , 1999 .

[13]  I. Nilsson,et al.  Influence of dolomitic lime on DOC and DON leaching in a forest soil , 1999 .

[14]  W. McDowell Internal nutrient fluxes in a Puerto Rican rain forest , 1998, Journal of Tropical Ecology.

[15]  K. Lajtha,et al.  Application of a 15N tracer to simulate and track the fate of atmospherically deposited N in the coastal forests of the Waquoit Bay Watershed, Cape Cod, Massachusetts , 1997, Oecologia.

[16]  P. Sollins,et al.  Water-extractable soil carbon in relation to the belowground carbon cycle , 1997, Biology and Fertility of Soils.

[17]  G. Guggenberger,et al.  Sorption of DOM and DOM fractions to forest soils , 1996 .

[18]  P. Carlier,et al.  Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review , 1996 .

[19]  W. McDowell,et al.  Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests , 1996 .

[20]  G. Guggenberger,et al.  Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions , 1994 .

[21]  W. McDowell,et al.  Export of carbon, nitrogen, and major ions from three tropical montane watersheds , 1994 .

[22]  G. Guggenberger,et al.  Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses , 1993 .

[23]  H. Seip,et al.  Dissolved organic carbon fractions in soil and stream water during variable hydrological conditions at Birkenes, southern Norway. , 1992 .

[24]  R. Qualls,et al.  Biodegradability of Dissolved Organic Matter in Forest Throughfall, Soil Solution, and Stream Water , 1992 .

[25]  R. Qualls,et al.  Geochemistry of Dissolved Organic Nutrients in Water Percolating through a Forest Ecosystem , 1991 .

[26]  R. Qualls,et al.  Fluxes of Dissolved Organic Nutrients and Humic Substances in a Deciduous Forest , 1991 .

[27]  W. McDowell,et al.  Origin, Composition, and Flux of Dissolved Organic Carbon in the Hubbard Brook Valley , 1988 .

[28]  C. Cronan,et al.  Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York , 1985 .

[29]  E. M. Thurman,et al.  Organic Geochemistry of Natural Waters , 1985, Developments in Biogeochemistry.

[30]  G. Likens,et al.  The composition and deposition of organic carbon in Precipitation , 1983 .

[31]  P. Sollins,et al.  Nitrogen and carbon solution chemistry of an old growth coniferous forest watershed before and after cutting , 1981 .

[32]  J. Leenheer,et al.  Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. , 1981, Environmental science & technology.

[33]  J. Hedges,et al.  The characterization of plant tissues by their lignin oxidation products , 1979 .

[34]  U. Schwertmann Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat‐Lösung , 1964 .

[35]  O. P. Mehra,et al.  Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate , 1958 .