Vibration control of adaptive structures : modeling, simulation and implementation of viscoelastic and piezoelectric damping technologies

Tese de doutoramento. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 2008

[1]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[2]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[3]  Robert L. Forward,et al.  Electronic damping of vibrations in optical structures. , 1979, Applied optics.

[4]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[5]  B. Azvine,et al.  Use of active constrained-layer damping for controlling resonant vibration , 1995 .

[6]  Edward F. Crawley,et al.  Intelligent structures for aerospace - A technology overview and assessment , 1994 .

[7]  Dimitris A. Saravanos,et al.  Analysis of passive damping in thick composite structures , 1993 .

[8]  E. Carrera A study of transverse normal stress effect on vibration of multilayered plates and shells , 1999 .

[9]  R. Moreira,et al.  The modelisation of constrained damping layer treatments using the finite element method: spatial model and viscoelastic behaviour , 2002 .

[10]  Amr M. Baz Robust control of active constrained layer damping , 1998 .

[11]  J. N. Reddy,et al.  Shear Deformation Plate and Shell Theories: From Stavsky to Present , 2004 .

[12]  Sohbi Sahraoui,et al.  Frequency dependence of elastic properties of acoustic foams , 2005 .

[13]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .

[14]  Ricardo A. Burdisso,et al.  A hybrid structural control approach for narrow-band and impulsive disturbance rejection , 1996 .

[15]  M. L. Drake Damping Properties of Various Materials , 1989 .

[16]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[17]  Jun-Sik Kim,et al.  Enhanced lower-order shear deformation theory for fully coupled electro-thermo-mechanical smart laminated plates , 2007 .

[18]  M. Touratier,et al.  A rectangular finite element for analysing composite multilayered shallow shells in statics, vibration and buckling , 1993 .

[19]  Roderic S. Lakes,et al.  Viscoelastic behaviour of composite materials with conventional- or negative-Poisson's-ratio foam as one phase , 1993 .

[20]  Roderic S. Lakes,et al.  On Poisson’s Ratio in Linearly Viscoelastic Solids , 2006 .

[21]  A. V. Srinivasan,et al.  Smart Structures: Analysis and Design , 2000 .

[22]  P. M. Naghdi,et al.  Propagation of Elastic Waves in Cylindrical Shells, Including the Effects of Transverse Shear and Rotatory Inertia , 1956 .

[23]  Victor Giurgiutiu,et al.  Review of Smart-Materials Actuation Solutions for Aeroelastic and Vibration Control , 2000 .

[24]  C. D. Johnson,et al.  Design of Passive Damping Systems , 1995 .

[25]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shear , 1996 .

[26]  Roger Ohayon,et al.  PIEZOELECTRIC ACTIVE VIBRATION CONTROL OF DAMPED SANDWICH BEAMS , 2001 .

[27]  J. N. Reddy,et al.  Relationships between bending solutions of classical and shear deformation beam theories , 1997 .

[28]  J. N. Reddy,et al.  On refined computational models of composite laminates , 1989 .

[29]  Harry G. Schaeffer,et al.  Finite elements: Their design and performance , 1995 .

[30]  Hélène Illaire A study of active-passive damping treatments , 2004 .

[31]  J. Gordis,et al.  AN ANALYSIS OF THE IMPROVED REDUCED SYSTEM (IRS) MODEL REDUCTION PROCEDURE , 1994 .

[32]  D. H. Robbins,et al.  Analysis of piezoelectrically actuated beams using a layer-wise displacement theory , 1991 .

[33]  John Anthony Mitchell,et al.  A refined hybrid plate theory for composite laminates with piezoelectric laminae , 1995 .

[34]  M. Mace Damping of Beam Vibrations By Means of a Thin Constrained Viscoelastic Layer: Evaluation of a New Theory , 1994 .

[35]  M. Biot SIMPLIFIED DYNAMICS OF MULTILAYERED ORTHOTROPIC VISCOELASTIC PLATES , 1972 .

[36]  Véronique Michaud,et al.  Thermoviscoelastic anisotropic analysis of process induced residual stresses and dimensional stability in real polymer matrix composite components , 2006 .

[37]  Brian R. Mace,et al.  Arbitrary active constrained layer damping treatments on beams: Finite element modelling and experimental validation , 2006 .

[38]  R. A. S. Moreira,et al.  Constrained Damping Layer Treatments: Finite Element Modeling , 2004 .

[39]  Paul Doty,et al.  The Methods of Specifying the Properties of Viscoelastic Materials , 1945 .

[40]  Kok Keng Ang,et al.  Dynamic stability analysis of finite element modeling of piezoelectric composite plates , 2004 .

[41]  Singiresu S Rao,et al.  Recent Advances in Sensing and Control of Flexible Structures Via Piezoelectric Materials Technology , 1999 .

[42]  S. A. Ambartsumian,et al.  On a general theory of anisotropic shells , 1958 .

[43]  C.M.A. Vasques,et al.  Coupled three‐layered analysis of smart piezoelectric beams with different electric boundary conditions , 2005 .

[44]  Daniel J. Inman,et al.  Vibration control through passive constrained layer damping and active control , 1997, Smart Structures.

[45]  E. M. Austin Variations on modeling of constrained-layer damping treatments , 1999 .

[46]  S. C. Southward,et al.  Active Control of Noise and Vibration , 1996 .

[47]  Robert L. Kidder,et al.  Reduction of structural frequency equations. , 1973 .

[48]  J. Reddy,et al.  Optimal control of thin circular cylindrical laminated composite shells using active constrained layer damping treatment , 2004 .

[49]  Amr M. Baz,et al.  VIBRATION CONTROL OF BENDING MODES OF PLATES USING ACTIVE CONSTRAINED LAYER DAMPING , 1999 .

[50]  Yi-Yuan Yu,et al.  Vibrations of Elastic Plates: Linear and Nonlinear Dynamical Modeling of Sandwiches, Laminated Composites, and Piezoelectric Layers , 1996 .

[51]  C. Sun,et al.  Vibration Damping of Structural Elements , 1995 .

[52]  Y. Lu,et al.  A finite element modeling approximation for damping material used in constrained damped structures , 1984 .

[53]  Yogesh M. Desai,et al.  Free vibrations of laminated beams using mixed theory , 2001 .

[54]  D. Saravanos,et al.  Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells , 1999 .

[55]  J. N. Reddy,et al.  A review of refined theories of laminated composite plates , 1990 .

[56]  D. Saravanos,et al.  Coupled discrete-layer finite elements for laminated piezoelectric platess , 1994 .

[57]  Karl Johan Åström,et al.  Adaptive Control (2 ed.) , 1995 .

[58]  E. Kerwin Damping of Flexural Waves by a Constrained Viscoelastic Layer , 1959 .

[59]  Craig A. Rogers,et al.  Intelligent Material Systems — The Dawn of a New Materials Age , 1993 .

[60]  N. Ganesan,et al.  Vibration behavior of ACLD treated beams under thermal environment , 2006 .

[61]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[62]  Amr M. Baz Optimization of energy dissipation characteristics of active constrained layer damping , 1997 .

[63]  R. Moreira,et al.  ViscoelasticViscoelastic damping: experimental identification of the 3M ISD112 complex modulus, assessment and validation of damping models , 2007 .

[64]  Ronald C. Averill,et al.  First-order zig-zag sublaminate plate theory and finite element model for laminated composite and sandwich panels , 2000 .

[65]  J. B. Kosmatka,et al.  Review of Methods for Analyzing Constrained‐Layer Damped Structures , 1993 .

[66]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[67]  M. A. Trindade Reduced-Order Finite Element Models of Viscoelastically Damped Beams Through Internal Variables Projection , 2006 .

[68]  Kon Well Wang,et al.  Damping optimization by integrating enhanced active constrained layer and active-passive hybrid constrained layer treatments , 2002 .

[69]  Y. Fung,et al.  Classical and Computational Solid Mechanics , 2001 .

[70]  MSC/NASTRAN solution of structural dynamic problems using anelastic displacement fields , 1995 .

[71]  Mikael Enelund,et al.  Time-Domain Finite Element Analysis of Viscoelastic Structures with Fractional Derivatives Constitutive Relations , 1997 .

[72]  W. M. Mansour,et al.  A Modified MSE Method for Viscoelastic Systems: A Weighted Stiffness Matrix Approach , 1995 .

[73]  Charles W. Bert,et al.  Material damping: An introductory review of mathematic measures and experimental technique , 1973 .

[74]  Philip A. Nelson,et al.  Active control of vibration, 1st edition , 1996 .

[75]  C. Zener Elasticity and anelasticity of metals , 1948 .

[76]  Daniel J. Inman,et al.  Model reduction of viscoelastic finite element models , 1999 .

[77]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[78]  Inderjit Chopra,et al.  Review of State of Art of Smart Structures and Integrated Systems , 2002 .

[79]  Yogesh M. Desai,et al.  Analytical solutions for vibrations of laminated and sandwich plates using mixed theory , 2004 .

[80]  S. Adhikari,et al.  Identification of damping: Part 1, viscous damping , 2001 .

[81]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[82]  Michael Krommer,et al.  On the influence of the electric field on free transverse vibrations of smart beams , 1999 .

[83]  D. J. Mead Passive Vibration Control , 1999 .

[84]  Francis C. Moon,et al.  Modal Sensors/Actuators , 1990 .

[85]  Etienne Balmes,et al.  Steel/Viscoelastic/Steel Sandwich Shells Computational Methods and Experimental Validations, #167 , 2000 .

[86]  Michael J. Brennan,et al.  Strategies for the active control of flexural vibration on a beam , 1995 .

[87]  S. W. Park,et al.  Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method , 1999 .

[88]  André Preumont,et al.  Hybrid feedback-feedforward control for vibration suppression , 1996 .

[89]  B. E. Douglas,et al.  Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic-Elastic Beams. , 1978 .

[90]  William R. Saunders,et al.  Adaptive Structures: Dynamics and Control , 1998 .

[91]  J. Whitney,et al.  On theories for the dynamic response of laminated plates , 1972 .

[92]  D. R. Bland Theory of Viscoelasticity: An Introduction , 2nd Edn. By R. M. C HRISTENSSEN . Academic, 1982. 364 pp. $45.00. , 1983 .

[93]  Per G. Reinhall,et al.  An Analytical and Experimental Analysis for a One-Dimensional Passive Stand-Off Layer Damping Treatment , 2000 .

[94]  J. N. Reddy,et al.  On laminated composite plates with integrated sensors and actuators , 1999 .

[95]  L. A. Silva Internal Variable and Temperature Modeling Behavior of Viscoelastic Structures -- A Control Analysis , 2003 .

[96]  N. J. Pagano,et al.  Elastic Behavior of Multilayered Bidirectional Composites , 1972 .

[97]  Dimitris A. Saravanos,et al.  Layerwise mechanics and finite element model for laminated piezoelectric shells , 1996 .

[98]  V. Varadan,et al.  Smart Material Systems and MEMS: Design and Development Methodologies , 2006 .

[99]  Stephen J. Elliott Global Vibration Control Through Local Feedback , 2007 .

[100]  M. F. Golnaraghi,et al.  Active Structural Vibration Control: A Review , 2003 .

[101]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[102]  Ayech Benjeddou,et al.  Advances in Hybrid Active-Passive Vibration and Noise Control Via Piezoelectric and Viscoelastic Constrained Layer Treatments , 2001 .

[103]  S. Timoshenko History of strength of materials , 1953 .

[104]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[105]  Grzegorz Kawiecki,et al.  Experimental Evaluation of Segmented Active Constrained Layer Damping Treatments , 1997 .

[106]  R. Christensen,et al.  Mechanics of composite materials , 1979 .

[107]  S. Poh,et al.  Performance of an active control system with piezoelectric actuators , 1988 .

[108]  Etienne Balmes,et al.  Pseudo-modal representations of large models with viscoelastic behavior , 1998 .

[109]  Stephen J. Elliott,et al.  Signal Processing for Active Control , 2000 .

[110]  J. Sorvari,et al.  On the direct estimation of creep and relaxation functions , 2007 .

[111]  Rongming Lin,et al.  Complex eigensensitivity‐based characterization of structures with viscoelastic damping , 1996 .

[112]  A. K. Noor,et al.  Free vibrations of multilayered composite plates. , 1973 .

[113]  Warren C. Gibson,et al.  Implementation of the Golla-Hughes-McTavish (GHM) method for viscoelastic materials using MATLAB and NASTRAN , 1995, Smart Structures.

[114]  Robert L. Clark A Hybrid Autonomous Control Approach , 1995 .

[115]  A.-S. Plouin,et al.  A test validated model of plates with constrained viscoelastic materials , 1999 .

[116]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[117]  Toshinori Takagi,et al.  A Concept of Intelligent Materials , 1990 .

[118]  Xu Zhou,et al.  Use of segmented constrained layer damping treatment for improved helicopter aeromechanical stability , 2000 .

[119]  Farhan Gandhi,et al.  Comparison of Damping Augmentation Mechanisms with Position and Velocity Feedback in Active Constrained Layer Treatments , 2002 .

[120]  Ugo Icardi,et al.  Applications of Zig-Zag Theories to Sandwich Beams , 2003 .

[121]  D. Shaw,et al.  FLEXURAL VIBRATION OF ROTATING RECTANGULAR PLATES OF VARIABLE THICKNESS , 1988 .

[122]  Ya-Peng Shen,et al.  Optimal control of active structures with piezoelectric modal sensors and actuators , 1997 .

[123]  T. Bailey,et al.  Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam , 1985 .

[124]  A. Lumsdaine,et al.  SHAPE OPTIMIZATION OF UNCONSTRAINED VISCOELASTIC LAYERS USING CONTINUUM FINITE ELEMENTS , 1998 .

[125]  E. Carrera On the use of the Murakami's zig-zag function in the modeling of layered plates and shells , 2004 .

[126]  Dimitris A. Saravanos,et al.  Coupled High-Order Shear Layerwise Analysis of Adaptive Sandwich Piezoelectric Composite Beams , 2005 .

[127]  Dimitris A. Saravanos,et al.  Integrated Damping Mechanics for Thick Composite Laminates and Plates , 1994 .

[128]  Aditi Chattopadhyay,et al.  A higher order theory for modeling composite laminates with induced strain actuators , 1997 .

[129]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[130]  Etienne Balmes MODEL REDUCTION FOR SYSTEMS WITH FREQUENCY DEPENDENT DAMPING PROPERTIES. , 1997 .

[131]  Y. K. Cheung,et al.  Bending and vibration of multilayer sandwich beams and plates , 1973 .

[132]  Norman M. Wereley,et al.  Frequency response of beams with passively constrained damping layers and piezoactuators , 1998, Smart Structures.

[133]  Rong C. Shieh,et al.  Governing equations and finite element models for multiaxial piezoelectric beam sensors/actuators , 1994 .

[134]  Ricardo A. Burdisso,et al.  Active control of broadband structural vibration using the adaptive LMS algorithm. , 1991 .

[135]  J. Ren,et al.  Exact solutions for laminated cylindrical shells in cylindrical bending , 1987 .

[136]  J. Dias Rodrigues,et al.  Adaptive feedforward control of vibration of a beam with active-passive damping treatments: numerical analysis and experimental implementation , 2005 .

[137]  Ugo Icardi,et al.  Large deflection of adaptive multilayered Timoshenko beams , 1995 .

[138]  Jean-François Deü,et al.  An adaptation of the Gear scheme for fractional derivatives , 2006 .

[139]  W. H. Huang,et al.  IS A COLLOCATED PIEZOELECTRIC SENSOR/ACTUATOR PAIR FEASIBLE FOR AN INTELLIGENT BEAM? , 1998 .

[140]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[141]  David H. Allen,et al.  Modeling the viscoelastic response of GMT structural components , 2001 .

[142]  Brian R. Mace,et al.  Finite element modelling of beams with arbitrary active constrained layer damping treatments , 2004 .

[143]  Aditi Chattopadhyay,et al.  Modeling segmented active constrained layer damping using hybrid displacement field , 1999 .

[144]  André Preumont,et al.  Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems , 2006 .

[145]  K. Miura,et al.  An Adaptive Structure Concept for Future Space Applications , 1988 .

[146]  E. E. Ungar,et al.  Loss Factors of Viscoelastic Systems in Terms of Energy Concepts , 1962 .

[147]  R. P. Shimpi,et al.  A Review of Refined Shear Deformation Theories of Isotropic and Anisotropic Laminated Plates , 2002 .

[148]  David G. Jones,et al.  Vibration and Shock in Damped Mechanical Systems , 1968 .

[149]  John Martin Plump An experimental and theoretical analysis of active vibration damping of a cantilever beam using a distributed actuator , 1986 .

[150]  J. Nemes,et al.  Time Domain Finite Element Simulations of Damped Multilayered Beams Using a Prony Series Representation , 2000 .

[151]  Gang Wang,et al.  Spectral Finite Element Analysis of Sandwich Beams With Passive Constrained Layer Damping , 2002 .

[152]  B. C. Nakra Vibration control with viscoelastic materials. III , 1976 .

[153]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[154]  A. H. Shah,et al.  Natural Vibrations of Laminated and Sandwich Plates , 2004 .

[155]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[156]  E. Carrera TRANSVERSE NORMAL STRAIN EFFECTS ON THERMAL STRESS ANALYSIS OF HOMOGENEOUS AND LAYERED PLATES , 2005 .

[157]  Ahmed K. Noor,et al.  Computational Models for Sandwich Panels and Shells , 1996 .

[158]  Daniel J. Inman,et al.  On the Realisation of GHM Models in Viscoelasticity , 1997 .

[159]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[160]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[161]  Y. Berthelot,et al.  Determination of the complex Young and shear dynamic moduli of viscoelastic materials. , 2001, The Journal of the Acoustical Society of America.

[162]  Amr M. Baz,et al.  ACTIVE CONSTRAINED LAYER DAMPING OF THIN CYLINDRICAL SHELLS , 2001 .

[163]  Kostas P. Soldatos,et al.  Review of Three Dimensional Dynamic Analyses of Circular Cylinders and Cylindrical Shells , 1994 .

[164]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[165]  Roger Stanway,et al.  Active constrained-layer damping: A state-of-the-art review , 2003 .

[166]  J. Rodrigues,et al.  Shells with Hybrid Active-Passive Damping Treatments: Modeling and Vibration Control , 2006 .

[167]  Roger Ohayon,et al.  Finite element formulation of viscoelastic sandwich beams using fractional derivative operators , 2004 .

[168]  S. Srinivas,et al.  Analysis of laminated, composite, circular cylindrical shells with general boundary conditions , 1974 .

[169]  Christopher Niezrecki,et al.  Piezoelectric actuation: State of the art , 2001 .

[170]  P. Cupiał,et al.  Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer , 1995 .

[171]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[172]  C. M. Mota Soares,et al.  Analysis of laminated adaptive plate structures using layerwise finite element models , 2004 .

[173]  G. C. Everstine,et al.  More on finite element modeling of damped composite systems , 1980 .

[174]  Ronald C. Averill,et al.  Development of simple, robust finite elements based on refined theories for thick laminated beams , 1996 .

[175]  J. Dias Rodrigues,et al.  Experimental identification of dynamic properties of cork compound , 2006 .

[176]  David I. G. Jones Handbook of Viscoelastic Vibration Damping , 2001 .

[177]  Ayech Benjeddou,et al.  Hybrid Active-Passive Damping Treatments Using Viscoelastic and Piezoelectric Materials: Review and Assessment , 2002 .

[178]  Ayech Benjeddou,et al.  Use of shunted shear-mode piezoceramics for structural vibration passive damping , 2006 .

[179]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[180]  T. Yiu,et al.  Finite element analysis of structures with classical viscoelastic materials , 1993 .

[181]  Sondipon Adhikari,et al.  Quantification of non-viscous damping in discrete linear systems , 2003 .

[182]  Dimitris A. Saravanos,et al.  Coupled Layerwise Analysis of Composite Beams with Embedded Piezoelectric Sensors and Actuators , 1995 .

[183]  I. Kunin,et al.  Theory of anisotropic plates : strength, stability, and vibrations , 1970 .

[184]  Amr M. Baz,et al.  Comparison between finite element formulations of active constrained layer damping using classical and layer-wise laminate theory , 2001 .

[185]  J. N. Reddy,et al.  A GENERAL NON-LINEAR THIRD-ORDER THEORY OF PLATES WITH MODERATE THICKNESS , 1990 .

[186]  Maurice A. Biot,et al.  Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena , 1954 .

[187]  Y. Yiu,et al.  Substructure and finite element formulation for linear viscoelastic materials , 1994 .

[188]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[189]  R. A. S. Moreira,et al.  Viscoelastic damping: mathematical modeling and finite element implementation , 2007 .

[190]  Chen Wanji,et al.  An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams , 2008 .

[191]  Maenghyo Cho,et al.  Efficient higher order composite plate theory for general lamination configurations , 1993 .

[192]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[193]  M. Balas,et al.  Feedback control of flexible systems , 1978 .

[194]  Robert L. Forward,et al.  Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast—Experiment , 1981 .

[195]  Roger Ohayon,et al.  Finite element modelling of hybrid active–passive vibration damping of multilayer piezoelectric sandwich beams—part I: Formulation , 2001 .

[196]  Hualing Chen,et al.  A study on the damping characteristics of laminated composites with integral viscoelastic layers , 2006 .

[197]  George A. Lesieutre,et al.  A discrete layer beam finite element for the dynamic analysis of composite sandwich beams with integral damping layers , 1999 .

[198]  T. Pritz,et al.  Measurement methods of complex Poisson's ratio of viscoelastic materials , 2000 .

[199]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[200]  Amr M. Baz,et al.  Control of axi-symmetric vibrations of cylindrical shells using active constrained layer damping , 2000 .

[201]  K. J. Buhariwala,et al.  Dynamics of viscoelastic structures , 1986 .

[202]  H. Tzou Piezoelectric Shells: Distributed Sensing and Control of Continua , 1993 .

[203]  Ahmed K. Noor,et al.  Assessment of Shear Deformation Theories for Multilayered Composite Plates , 1989 .

[204]  R. Moreira,et al.  Experimental Identification of GHM and ADF Parameters for Viscoelastic Damping Modeling , 2006 .

[205]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[206]  F. Fahy,et al.  Sound and Structural Vibration: Radiation, Transmission and Response , 1987 .

[207]  H. Tiersten Hamilton's principle for linear piezoelectric media , 1967 .

[208]  Donald W. Radford,et al.  Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis , 2005 .

[209]  V. Balamurugan,et al.  Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control , 2001 .

[210]  R. P. Shimpi,et al.  A Review of Refined Shear Deformation Theories for Isotropic and Anisotropic Laminated Beams , 2001 .

[211]  T. K. Varadan,et al.  Bending of laminated orthotropic cylindrical shells—An elasticity approach , 1991 .

[212]  M. Ray,et al.  Active structural–acoustic control of laminated cylindrical panels using smart damping treatment , 2007 .

[213]  I. Demirdzic,et al.  FINITE-VOLUME APPROACH TO THERMOVISCOELASTICITY , 2005 .

[214]  H. F. Tiersten,et al.  Linear Piezoelectric Plate Vibrations , 1969 .

[215]  M. Touratier,et al.  Refined finite element for piezoelectric laminated composite beams , 2004 .

[216]  Woonbong Hwang,et al.  Vibration control of an arc type shell using active constrained layer damping , 2004 .

[217]  A. Baz Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping , 2000 .

[218]  G. Lesieutre,et al.  DAMPING IN FE MODELS , 2001 .

[219]  Stephen A. Hambric,et al.  Inferring Viscoelastic Dynamic Material Properties From Finite Element and Experimental Studies of Beams With Constrained Layer Damping , 2007 .

[220]  P. Vigoureux Piezoelectricity An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals , 1947, Nature.

[221]  R. A. S. Moreira,et al.  A generalized layerwise finite element for multi-layer damping treatments , 2006 .

[222]  Roger Ohayon,et al.  Finite element analysis of frequency- and temperature-dependent hybrid active-passive vibration damping , 2000 .

[223]  M. A. Trindade,et al.  Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping , 2000 .

[224]  Dimitris A. Saravanos,et al.  Hybrid Multidamped Composite Plates with Viscoelastic Composite Plies and Shunted Piezoelectric Layers , 2003 .

[225]  A. Baz,et al.  Vibration control of beams using stand-off layer damping: finite element modeling and experiments , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[226]  George A. Lesieutre,et al.  Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties , 1992 .

[227]  R. Koeller Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics , 1986 .

[228]  Edward C. Smith,et al.  Thermomechanical modeling of elastomeric materials , 1996 .

[229]  A. Kalnins,et al.  Thin elastic shells , 1967 .

[230]  E. Reissner On a certain mixed variational theorem and a proposed application , 1984 .

[231]  Y. C. Das,et al.  Vibration of layered shells , 1973 .

[232]  G. C. Evans Leçons sur les Fonctions de Lignes , 1915 .

[233]  J. N. Reddy,et al.  Modelling of thick composites using a layerwise laminate theory , 1993 .

[234]  Richard Schapery,et al.  Application of Thermodynamics to Thermomechanical, Fracture, and Birefringent Phenomena in Viscoelastic Media , 1964 .

[235]  Kostas P. Soldatos,et al.  A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories , 1993 .

[236]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[237]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[238]  T. K. Varadan,et al.  Benchmark elasticity solution for locally loaded laminated orthotropic cylindrical shells , 1994 .

[239]  Grant P. Steven,et al.  A Review on the Modelling of Piezoelectric Sensors and Actuators Incorporated in Intelligent Structures , 1998 .

[240]  R. J. Ross,et al.  Bending of multilayer sandwich beams. , 1968 .

[241]  J. Dias Rodrigues,et al.  Active vibration control of a smart beam through piezoelectric actuation and laser vibrometer sensing: simulation, design and experimental implementation , 2007 .

[242]  A. Gemant,et al.  A Method of Analyzing Experimental Results Obtained from Elasto‐Viscous Bodies , 1936 .

[243]  N. Tschoegl Time Dependence in Material Properties: An Overview , 1997 .

[244]  C. Fuller,et al.  Control of Broadband Acoustic Radiation with Adaptive Structures , 1996 .

[245]  S. E. Burke,et al.  Active vibration control of a simply supported beam using a spatially distributed actuator , 1987, IEEE Control Systems Magazine.

[247]  I. Chopra,et al.  The Effect of Laminate Kinematic Assumptions on the Global Response of Actuated Plates , 2006 .

[248]  Victor Birman,et al.  On the Choice of Shear Correction Factor in Sandwich Structures , 2000, Mechanics of Sandwich Structures.

[249]  I. Y. Shen,et al.  Hybrid Damping Through Intelligent Constrained Layer Treatments , 1994 .

[250]  D. J. Mead Structural damping and damped vibration , 2002 .

[251]  W. Hwang,et al.  Finite Element Modeling of Piezoelectric Sensors and Actuators , 1993 .

[252]  Kevin Napolitano,et al.  Active constrained layer viscoelastic damping , 1993 .

[253]  I. Y. Shen,et al.  Bending-vibration control of composite and isotropic plates through intelligent constrained-layer treatments , 1994 .

[254]  G. C. Everstine,et al.  Vibrations of three layered damped sandwich plate composites , 1979 .

[255]  D. S. Dugdale,et al.  Introduction to the Mechanics of Solids , 1967 .

[256]  Mehmet Imregun,et al.  FREQUENCY–DOMAIN CRITERIA FOR CORRELATING AND UPDATING DYNAMIC FINITE ELEMENT MODELS , 2001 .

[257]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .

[258]  D. J. Mead The Effect of a Damping Compound on Jet‐Efflux Excited Vibrations , 1960 .

[259]  E. Carrera Theories and finite elements for multilayered, anisotropic, composite plates and shells , 2002 .

[260]  A. Leissa,et al.  Vibration of shells , 1973 .

[261]  James F. Doyle,et al.  Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms , 1997 .

[262]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[263]  David W. Miller,et al.  Distributed Sensors as Spatial Filters in Active Structural Control , 1994 .

[264]  T. Shimogo Vibration Damping , 1994, Active and Passive Vibration Damping.

[265]  J. Dias Rodrigues,et al.  Active vibration control of smart piezoelectric beams: Comparison of classical and optimal feedback control strategies , 2006 .

[266]  M. O. Tokhi,et al.  Active Sound and Vibration Control: Theory and Applications [Book Review] , 2004, IEEE Control Systems.

[267]  Roger Stanway,et al.  ACTIVE CONSTRAINED LAYER DAMPING OF CLAMPED-CLAMPED PLATE VIBRATIONS , 2001 .

[268]  J. N. Reddy,et al.  An efficient computational model for the stress analysis of smart plate structures , 1996 .

[269]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[270]  Michael Stiassnie,et al.  On the application of fractional calculus for the formulation of viscoelastic models , 1979 .

[271]  Daniel J. Inman,et al.  Hybrid damping models using the Golla-Hughes-McTavish method with internally balanced model reduction and output feedback , 2000 .

[272]  Joseph Padovan,et al.  Computational algorithms for FE formulations involving fractional operators , 1987 .

[273]  R. C. Averill,et al.  Thick beam theory and finite element model with zig-zag sublaminate approximations , 1996 .

[274]  Kazuro Kageyama,et al.  Vibration and Damping Prediction of Laminates with Constrained Viscoelastic Layers--Numerical Analysis by a Multilayer Higher-Order-Deformable Finite Element and Experimental Observations , 2003 .

[275]  S A Ambartsumian Fragments of the Theory of Anisotropic Shells , 1990 .

[276]  I. Y. Shen,et al.  Development of Isoparametric, Degenerate Constrained Layer Element for Plate and Shell Structures , 2001 .

[277]  Ugo Icardi,et al.  Large-deflection and stress analysis of multilayered plates with induced-strain actuators , 1996 .

[278]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[279]  Conor D. Johnson,et al.  Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers , 1981 .

[280]  A. R. Johnson Modeling viscoelastic materials using internal variables , 1999 .

[281]  Afzal Suleman Smart structures : applications and related technologies , 2001 .

[282]  A. Benjeddou Modelling and Simulation of Adaptive Structures and Composites: Current Trends and Future Directions , 2004 .

[283]  J. N. Reddy,et al.  Effect of Delamination on Active Constrained Layer Damping of Smart Laminated Composite Beams , 2004 .

[284]  E. Carrera Theories and Finite Elements for Multilayered Plates and Shells:A Unified compact formulation with numerical assessment and benchmarking , 2003 .

[285]  Igor Emri,et al.  Poisson's Ratio in Linear Viscoelasticity – A Critical Review , 2002 .

[286]  George A. Lesieutre,et al.  Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields , 1996 .

[287]  Ronald F. Gibson,et al.  The Use of Strain Energy-Based Finite Element Techniques in the Analysis of Various Aspects of Damping of Composite Materials and Structures , 1992 .

[288]  F. K. Bogner,et al.  Finite Element Vibration Analysis of Damped Structures , 1982 .

[289]  K. Chandrashekhara,et al.  Adaptive Shape Control of Composite Beams with Piezoelectric Actuators , 1997 .

[290]  Maurice A. Biot,et al.  Variational Principles in Irreversible Thermodynamics with Application to Viscoelasticity , 1955 .

[291]  Daniel C. Hammerand,et al.  Thermoviscoelastic Analysis of Composite Structures Using a Triangular Flat Shell Element , 1999 .

[292]  Daniel J. Inman,et al.  Time-Varying Controller for Temperature-Dependent Viscoelasticity , 2005 .

[293]  Lothar Gaul,et al.  Finite Element Formulation of Viscoelastic Constitutive Equations Using Fractional Time Derivatives , 2002 .

[294]  Usik Lee,et al.  A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics , 1996 .

[295]  In Lee,et al.  An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor , 1997 .

[296]  Toshinori Takagi,et al.  Present State and Future of the Intelligent Materials and Systems in Japan , 1999 .

[297]  Erasmo Carrera,et al.  Classical and mixed finite elements for static and dynamic analysis of piezoelectric plates , 2007 .

[298]  Brian G. Ferguson Calculation of the loss tangent for viscoelastic materials using the triple‐bar composite resonance technique , 1984 .

[299]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[300]  George A. Lesieutre,et al.  Vibration damping and control using shunted piezoelectric materials , 1998 .

[301]  R. Garcia Lage,et al.  Analysis of adaptive plate structures by mixed layerwise finite elements , 2004 .

[302]  Michael L. Drake,et al.  Polymeric Material Testing Procedures to Determine Damping Properties and the Results of Selected Commercial Materials , 1980 .

[303]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[304]  Horn-Sen Tzou,et al.  Intelligent Structural Systems , 1992 .

[305]  Amr M. Baz,et al.  OPTIMIZATION OF ENERGY DISSIPATION OF ACTIVE CONSTRAINED LAYER DAMPING TREATMENTS OF PLATES , 1997 .

[306]  Daniel J. Inman,et al.  Reduced-Order Models of Structures with Viscoelastic Components , 1999 .

[307]  A. Baz,et al.  Vibration damping and control using active constrained layer damping : A survey , 1999 .

[308]  André Preumont,et al.  Vibration Control of Active Structures: An Introduction , 2018 .

[309]  A. Bhimaraddi Sandwich beam theory and the analysis of constrained layer damping , 1995 .

[310]  P. Remington Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies (3rd Edition) , 2005 .

[311]  Michael Krommer,et al.  A Reissner-Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect , 2000 .

[312]  J. Soovere,et al.  A Design Guide for Damping of Aerospace Structures , 1984 .

[313]  M. L. Williams,et al.  THE STRUCTURAL ANALYSIS OF VISCOELASTIC MATERIALS , 1963 .

[314]  R. A. S. Moreira,et al.  PARTIAL CONSTRAINED VISCOELASTIC DAMPING TREATMENT OF STRUCTURES: A MODAL STRAIN ENERGY APPROACH , 2006 .

[315]  Etienne Balmès,et al.  Tools for Viscoelastic Damping Treatment Design . Application to an Automotive Floor Panel , 2002 .

[316]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[317]  R. E. D. Bishop,et al.  The Treatment of Damping Forces in Vibration Theory , 1955, The Journal of the Royal Aeronautical Society.

[318]  James Clerk Maxwell On the Dynamical Theory of Gases , 2003 .

[319]  Amr M. Baz,et al.  Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping , 1996 .

[320]  César Miguel de Almeida Vasques Modelização do controlo activo de vibrações de vigas com sensores e actuadores piezoeléctricos , 2002 .

[321]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[322]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[323]  C. K. Lee Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships , 1990 .

[324]  Junji Tani,et al.  Intelligent Material Systems: Application of Functional Materials , 1998 .

[325]  C. K. Lee,et al.  Piezoelectric modal sensor/actuator pairs for critical active damping vibration control , 1991 .

[326]  Ricardo A. Burdisso,et al.  Adaptive feedforward control of non-minimum phase structural systems , 1995 .

[327]  Ronald L. Bagley,et al.  Power law and fractional calculus model of viscoelasticity , 1989 .

[328]  N. Rogacheva The Theory of Piezoelectric Shells and Plates , 1994 .

[329]  H. Tzou,et al.  Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems , 2004 .

[330]  Rui S. Moreira Modelação e análise de tratamentos viscoelásticos multi-camada para controlo passivo de vibrações , 2004 .

[331]  Hidenori Murakami,et al.  Laminated Composite Plate Theory With Improved In-Plane Responses , 1986 .

[332]  Ernest B. Paxson,et al.  Real and imaginary parts of the complex viscoelastic modulus for boron fiber reinforced plastics (BFRP) , 1974 .

[333]  Daniel J. Inman,et al.  Survey of modern methods for modeling frequency dependent damping in finite element models , 1993 .

[334]  Evaristo Riande,et al.  Polymer viscoelasticity : stress and strain in practice , 2000 .

[335]  Santosh Kapuria,et al.  Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams , 2004 .

[336]  S. H. Crandall The role of damping in vibration theory , 1970 .

[337]  T. Hughes,et al.  Finite element method for piezoelectric vibration , 1970 .

[338]  A. C. Galucio,et al.  A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain - Application to Sandwich Beams , 2005 .

[339]  Stephen J. Elliott,et al.  ACTIVE POSITION CONTROL OF A FLEXIBLE SMART BEAM USING INTERNAL MODEL CONTROL , 2001 .

[340]  David J. Wagg,et al.  Adaptive Structures: Engineering Applications , 2007 .

[341]  Aditi Chattopadhyay,et al.  Improved Helicopter Aeromechanical Stability Analysis Using Segmented Constrained Layer Damping and Hybrid Optimization , 2000, Smart Structures.

[342]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[343]  D. Ballhause,et al.  A unified formulation to assess multilayered theories for piezoelectric plates , 2005 .

[344]  Cheng Huang,et al.  Vibration Modeling and Software Tools , 2005 .

[345]  Jianqiao Ye,et al.  Three-dimensional vibration of laminated cylinders and cylindrical panels with symmetric or antisymmetric cross-ply lay-up , 1994 .

[346]  Heung Soo Kim,et al.  Implementation of a Coupled Thermo-Piezoelectric-Mechanical Model in the LQG Controller Design for Smart Composite Shells , 2002 .

[347]  Sathya Hanagud,et al.  Electronic damping techniques and active vibration control , 1985 .

[348]  M. Schwartz Encyclopedia of smart materials , 2002 .

[349]  Mikael Enelund,et al.  Time domain modeling of damping using anelastic displacement fields and fractional calculus , 1999 .

[350]  M. Ristinmaa,et al.  The Mechanics of Constitutive Modeling , 2005 .

[351]  Harry F. Olson,et al.  Electronic Control of Noise, Vibration, and Reverberation , 1956 .

[352]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .