UV-activated conductances allow for multiple time scale learning
暂无分享,去创建一个
[1] D. Dimaria,et al. Capture and emission of electrons at 2.4-eV-deep trap level in SiO2films , 1975 .
[2] S. Tam,et al. An electrically trainable artificial neural network (ETANN) with 10240 'floating gate' synapses , 1990, International 1989 Joint Conference on Neural Networks.
[3] R. Tawel,et al. A CMOS UV-programmable non-volatile synaptic array , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.
[4] W. Guggenbuhl,et al. An analog trimming circuit based on a floating-gate device , 1988 .
[5] D. Frohman-Bentchkowsky,et al. Dynamic model of trapping‐detrapping in SiO2 , 1985 .
[6] E. Vittoz,et al. Analog Storage of Adjustable Synaptic Weights , 1991 .
[7] L. Carley,et al. Trimming analog circuits using floating-gate analog MOS memory , 1989, IEEE International Solid-State Circuits Conference, 1989 ISSCC. Digest of Technical Papers.
[8] Jin Luo,et al. CMOS UV-writable non-volatile analog storage , 1991 .
[9] Fernando J. Pineda,et al. Dynamics and architecture for neural computation , 1988, J. Complex..