Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras
暂无分享,去创建一个
[1] Masaki Kashiwara,et al. Crystal Graphs for Representations of the q-Analogue of Classical Lie Algebras , 1994 .
[2] Masaki Kashiwara,et al. Crystalizing theq-analogue of universal enveloping algebras , 1990 .
[3] QuantumR matrices related to the spin representations ofBn andDn , 1990 .
[4] Andrei Zelevinsky,et al. Tensor product multiplicities and convex polytopes in partition space , 1988 .
[5] Glânffrwd P Thomas. On Schensted's construction and the multiplication of schur functions , 1978 .
[6] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[7] Michio Jimbo,et al. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation , 1986 .
[8] M. Kashiwara,et al. On crystal bases of the $Q$-analogue of universal enveloping algebras , 1991 .
[9] Michio Jimbo,et al. Aq-difference analogue of U(g) and the Yang-Baxter equation , 1985 .
[10] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[11] Peter Littelmann,et al. A Generalization of the Littlewood-Richardson Rule , 1990 .