Molecule-based nonlinear optical switch with highly tunable on-off temperature using a dual solid solution approach

[1]  Peng-Fei Li,et al.  A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate , 2019, Science.

[2]  Xitao Liu,et al.  [C5 H12 N]SnCl3 : A Tin Halide Organic-Inorganic Hybrid as an Above-Room-Temperature Solid-State Nonlinear Optical Switch. , 2019, Chemistry.

[3]  Zhihua Sun,et al.  Rational chemical doping of metal halide perovskites. , 2019, Chemical Society reviews.

[4]  Xitao Liu,et al.  Above-room-temperature switching of quadratic nonlinear optical properties in a Bi–halide organic–inorganic hybrid , 2018 .

[5]  S. Horike,et al.  Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks , 2018, Nature Reviews Materials.

[6]  P. Midgley,et al.  Liquid phase blending of metal-organic frameworks , 2018, Nature Communications.

[7]  Yadong Li,et al.  Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[8]  Xitao Liu,et al.  A lead-free perovskite-like hybrid with above-room-temperature switching of quadratic nonlinear optical properties. , 2018, Chemical communications.

[9]  H. Snaith,et al.  Impact of Bi3+ Heterovalent Doping in Organic-Inorganic Metal Halide Perovskite Crystals. , 2018, Journal of the American Chemical Society.

[10]  Chao Shi,et al.  Mixed Bromine–Chlorine Induced Great Dielectric and Second-Order Nonlinear Optical Properties Changes in Phase Transitions Compounds [H2mdap][BiBr5(1-x)Cl5x] (x = 0.00–1.00) , 2017 .

[11]  G. Guo,et al.  Second-order nonlinear optical switching with a record-high contrast for a photochromic and thermochromic bistable crystal† †Electronic supplementary information (ESI) available: Crystallographic data, bond lengths and angles, and characterization of 1. CCDC 1519422. For ESI and crystallographic dat , 2017, Chemical science.

[12]  D. Fu,et al.  Dielectric and nonlinear optical dual switching in an organic–inorganic hybrid relaxor [(CH3)3PCH2OH][Cd(SCN)3] , 2017 .

[13]  Chengmin Ji,et al.  Exceptional bi-step switching of quadratic nonlinear optical properties in a one-dimensional channel compound. , 2017, Chemical communications.

[14]  François-Xavier Coudert,et al.  Liquid metal-organic frameworks. , 2017, Nature materials.

[15]  Sasa Wang,et al.  Exceptional Three-Level Switching Behaviors of Quadratic Nonlinear Optical Properties in a Tristable Molecule-Based Dielectric , 2017 .

[16]  Zhuoying Chen,et al.  Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. , 2017, Journal of the American Chemical Society.

[17]  S. Kitagawa,et al.  Mechanical Alloying of Metal-Organic Frameworks. , 2017, Angewandte Chemie.

[18]  Chun He,et al.  Flexible, Luminescent Metal-Organic Frameworks Showing Synergistic Solid-Solution Effects on Porosity and Sensitivity. , 2016, Angewandte Chemie.

[19]  Wen Zhang,et al.  Tuning dielectric transitions by B′-site mixing in hybrid double perovskite crystals (CH3NH3)2[K1−xRbxCo(CN)6] (x = 0.23–0.62) , 2016 .

[20]  Chun He,et al.  Molecular Dynamics of Flexible Polar Cations in a Variable Confined Space: Toward Exceptional Two‐Step Nonlinear Optical Switches , 2016, Advanced materials.

[21]  Yu-Meng You,et al.  Bandgap Engineering of Lead‐Halide Perovskite‐Type Ferroelectrics , 2016, Advanced materials.

[22]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[23]  Xitao Liu,et al.  Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal. , 2015, Journal of the American Chemical Society.

[24]  Song Gao,et al.  An A-site mixed-ammonium solid solution perovskite series of [(NH2 NH3 )x (CH3 NH3 )1-x ][Mn(HCOO)3 ] (x=1.00-0.67). , 2015, Angewandte Chemie.

[25]  R. Xiong,et al.  The First Organic–Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3 , 2015, Advanced materials.

[26]  Shu-quan Zhang,et al.  High-Performance Switching of Bulk Quadratic Nonlinear Optical Properties with Large Contrast in Polymer Films Based on Organic Hydrogen-Bonded Ferroelectrics , 2015 .

[27]  S. Kitagawa,et al.  Reversible solid-to-liquid phase transition of coordination polymer crystals. , 2015, Journal of the American Chemical Society.

[28]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[29]  F. Deng,et al.  Second‐Order Nonlinear Optical Switch of a New Hydrogen‐Bonded Supramolecular Crystal with a High Laser‐Induced Damage Threshold , 2014 .

[30]  Sheng-ping Guo,et al.  Electron-transfer photochromism to switch bulk second-order nonlinear optical properties with high contrast. , 2014, Angewandte Chemie.

[31]  M. Havenith,et al.  (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid. , 2014, Chemistry.

[32]  R. De Angelis,et al.  Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. , 2014, Journal of the American Chemical Society.

[33]  F. Deng,et al.  Solid‐State Reversible Quadratic Nonlinear Optical Molecular Switch with an Exceptionally Large Contrast , 2013, Advanced materials.

[34]  B. Champagne,et al.  Design and characterization of molecular nonlinear optical switches. , 2013, Accounts of chemical research.

[35]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[36]  Susumu Kitagawa,et al.  Coordination-network-based ionic plastic crystal for anhydrous proton conductivity. , 2012, Journal of the American Chemical Society.

[37]  M. Samoć,et al.  Metal alkynyl complexes as switchable NLO systems , 2011 .

[38]  B. Champagne,et al.  Nonlinear Optical Switching Behavior in the Solid State: A Theoretical Investigation on Anils , 2011 .

[39]  Keiji Nakagawa,et al.  Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. , 2010, Angewandte Chemie.

[40]  F. Kajzar,et al.  A Switchable NLO Organic‐Inorganic Compound Based on Conformationally Chiral Disulfide Molecules and Bi(III)I5 Iodobismuthate Networks , 2008 .

[41]  M. Sliwa,et al.  Design, Synthesis, Structural and Nonlinear Optical Properties of Photochromic Crystals: Toward Reversible Molecular Switches , 2005 .

[42]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[43]  A. Roßberg,et al.  Wavelet analysis of extended x-ray absorption fine structure data , 2005 .

[44]  X. You,et al.  Inorganic–Organic Hybrid Materials: Synthesis and X-Ray Structure of N,N′-Dimethylimidazolium Salts [(Me2Im)2][Cd2(SCN)6] and N,N′-Dicyclohexylimidazolium [(Cy2Im)2][Cd2(SCN)6]·C3H6O , 2002 .

[45]  A. Rappé,et al.  Toward an Understanding of Zeolite Y as a Cracking Catalyst with the Use of Periodic Charge Equilibration , 1996 .

[46]  K. Aizu Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals , 1969 .

[47]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .