New Insights on the Reversible Lithiation Mechanism of TiO2(B) by Operando X-ray Absorption Spectroscopy and X-ray Diffraction Assisted by First-Principles Calculations

Operando X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) measurements provide new insights on the mechanism of lithium insertion into TiO2(B). The investigation of the evolution of electronic, long-range, and local structure during electrochemical cycling indicates a purely monophasic insertion mechanism upon lithium insertion, while global and local structure are only slightly modified. While XRD reflects an anisotropic lattice expansion, EXAFS reveals a wide distribution of Ti–O bond length, in line with the presence of two distinct distorted octahedral Ti environments, in agreement with previous DFT calculations. Upon lithium insertion, these Ti–O coordination shells undergo significant modifications which are enhanced once the insertion of 0.4 Li is exceeded, connoting a two regime process that is in good agreement with the electrochemical signature of this material. DFT calculations and local chemical bond analyses were coupled with experimental results, thus providing additional insi...

[1]  T. Hanley,et al.  NMR and X-ray Absorption Study of Lithium Intercalation in Micro- and Nanocrystalline Anatase , 1999 .

[2]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[3]  S. Link,et al.  Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy , 2011 .

[4]  P. Bruce,et al.  TiO(2)-B nanowires. , 2004, Angewandte Chemie.

[5]  L. Brohan,et al.  Properties physiques des bronzes MxTiO2 (B) , 1983 .

[6]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[7]  V. Aravindan,et al.  Extraordinary long-term cycleability of TiO2-B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes , 2013 .

[8]  T. Jacobsen,et al.  Lithium insertion in β-LixV2O5 at ambient temperature , 1983 .

[9]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[10]  G. Nuspl,et al.  Lithium intercalation in TiO2 modifications , 1997 .

[11]  Anton Van der Ven,et al.  Thermodynamics of Lithium in TiO2(B) from First Principles , 2012 .

[12]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[13]  Deborah J. Jones,et al.  Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries , 2013 .

[14]  Deborah J. Jones,et al.  Nb-Doped TiO 2 Nanofibers for Lithium Ion Batteries , 2013 .

[15]  Ugo Lafont,et al.  In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2 , 2010 .

[16]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[17]  L. Stievano,et al.  Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries , 2013 .

[18]  Jiulin Wang,et al.  Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.

[19]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[20]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[21]  M. Ben Yahia,et al.  Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. , 2009, The Journal of chemical physics.

[22]  N. Takami,et al.  Characterization of Lithium Storage in TiO2(B) by 6Li-NMR and X-Ray Diffraction Analysis , 2014 .

[23]  L. Stievano,et al.  Study of the insertion mechanism of lithium into anatase by operando X-ray diffraction and absorption spectroscopy , 2014 .

[24]  P. Bruce,et al.  TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .

[25]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[26]  T. Brousse,et al.  TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. , 2010, Inorganic chemistry.

[27]  John J. Rehr,et al.  Theoretical X-ray Absorption Fine Structure Standards , 1991 .

[28]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[29]  P. Madden,et al.  Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA+U density functional calculations , 2012 .

[30]  G. Henkelman,et al.  Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets , 2012 .

[31]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[32]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[33]  T. Uozumi,et al.  Theory of many-body effects in valence, core-level and isochromat spectroscopies along the 3d transition metal series of oxides , 1995 .

[34]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[35]  S. C. Parker,et al.  Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study , 2010 .

[36]  Toyoki Okumura,et al.  Nanosized Effect on Electronic/Local Structures and Specific Lithium-Ion Insertion Property in TiO2–B Nanowires Analyzed by X-ray Absorption Spectroscopy , 2011 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  J. Gale,et al.  A first principles investigation of lithium intercalation in TiO2-B , 2009 .

[39]  L. Carbone,et al.  Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery , 2011 .

[40]  Henghui Zhou,et al.  Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. , 2011, Chemical communications.

[41]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[42]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[43]  Toyoki Okumura,et al.  Electronic and local structural changes with lithium-ion insertion in TiO2-B: X-ray absorption spectroscopy study , 2011 .

[44]  M. Koudriachova Role of the surface in Li insertion into nanowires of TiO2‐B , 2010 .