New Insights on the Reversible Lithiation Mechanism of TiO2(B) by Operando X-ray Absorption Spectroscopy and X-ray Diffraction Assisted by First-Principles Calculations
暂无分享,去创建一个
Marie-Liesse Doublet | Cécile Tessier | Laure Monconduit | L. Stievano | L. Monconduit | C. Tessier | M. Doublet | M. Fehse | F. Fischer | Lorenzo Stievano | Florent Fischer | Marcus Fehse | Mouna Ben Yahia | Frédéric Lemoigno | M. Yahia | F. Lemoigno
[1] T. Hanley,et al. NMR and X-ray Absorption Study of Lithium Intercalation in Micro- and Nanocrystalline Anatase , 1999 .
[2] Juan Rodriguez-Carvaj,et al. Recent advances in magnetic structure determination neutron powder diffraction , 1993 .
[3] S. Link,et al. Characterizing Plasmons in Nanoparticles and Their Assemblies with Single Particle Spectroscopy , 2011 .
[4] P. Bruce,et al. TiO(2)-B nanowires. , 2004, Angewandte Chemie.
[5] L. Brohan,et al. Properties physiques des bronzes MxTiO2 (B) , 1983 .
[6] L. Kavan,et al. Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .
[7] V. Aravindan,et al. Extraordinary long-term cycleability of TiO2-B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes , 2013 .
[8] T. Jacobsen,et al. Lithium insertion in β-LixV2O5 at ambient temperature , 1983 .
[9] A. R. Armstrong,et al. TiO2‐B Nanowires , 2004 .
[10] G. Nuspl,et al. Lithium intercalation in TiO2 modifications , 1997 .
[11] Anton Van der Ven,et al. Thermodynamics of Lithium in TiO2(B) from First Principles , 2012 .
[12] G. Nolze,et al. POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .
[13] Deborah J. Jones,et al. Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries , 2013 .
[14] Deborah J. Jones,et al. Nb-Doped TiO 2 Nanofibers for Lithium Ion Batteries , 2013 .
[15] Ugo Lafont,et al. In Situ Structural Changes upon Electrochemical Lithium Insertion in Nanosized Anatase TiO2 , 2010 .
[16] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[17] L. Stievano,et al. Tailoring of phase composition and morphology of TiO2-based electrode materials for lithium-ion batteries , 2013 .
[18] Jiulin Wang,et al. Nanosheet‐Constructed Porous TiO2–B for Advanced Lithium Ion Batteries , 2012, Advanced materials.
[19] T. Jacobsen,et al. Lithium insertion in different TiO2 modifications , 1988 .
[20] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[21] M. Ben Yahia,et al. Updated references for the structural, electronic, and vibrational properties of TiO2(B) bulk using first-principles density functional theory calculations. , 2009, The Journal of chemical physics.
[22] N. Takami,et al. Characterization of Lithium Storage in TiO2(B) by 6Li-NMR and X-Ray Diffraction Analysis , 2014 .
[23] L. Stievano,et al. Study of the insertion mechanism of lithium into anatase by operando X-ray diffraction and absorption spectroscopy , 2014 .
[24] P. Bruce,et al. TiO2–B nanowires as negative electrodes for rechargeable lithium batteries , 2005 .
[25] S. C. Parker,et al. Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .
[26] T. Brousse,et al. TiO2(B) nanoribbons as negative electrode material for lithium ion batteries with high rate performance. , 2010, Inorganic chemistry.
[27] John J. Rehr,et al. Theoretical X-ray Absorption Fine Structure Standards , 1991 .
[28] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[29] P. Madden,et al. Lithium intercalation into TiO2(B): A comparison of LDA, GGA, and GGA+U density functional calculations , 2012 .
[30] G. Henkelman,et al. Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets , 2012 .
[31] V. Anisimov,et al. Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.
[32] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[33] T. Uozumi,et al. Theory of many-body effects in valence, core-level and isochromat spectroscopies along the 3d transition metal series of oxides , 1995 .
[34] Stéphanie Belin,et al. An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .
[35] S. C. Parker,et al. Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study , 2010 .
[36] Toyoki Okumura,et al. Nanosized Effect on Electronic/Local Structures and Specific Lithium-Ion Insertion Property in TiO2–B Nanowires Analyzed by X-ray Absorption Spectroscopy , 2011 .
[37] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[38] J. Gale,et al. A first principles investigation of lithium intercalation in TiO2-B , 2009 .
[39] L. Carbone,et al. Mitigation of the irreversible capacity and electrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2 Li-ion battery , 2011 .
[40] Henghui Zhou,et al. Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. , 2011, Chemical communications.
[41] Peter G. Bruce,et al. Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .
[42] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[43] Toyoki Okumura,et al. Electronic and local structural changes with lithium-ion insertion in TiO2-B: X-ray absorption spectroscopy study , 2011 .
[44] M. Koudriachova. Role of the surface in Li insertion into nanowires of TiO2‐B , 2010 .