Fault tolerant control design for polytopic uncertain LPV systems

This paper presents a fault tolerant control (FTC) design for polytopic uncertain linear parameter-varying (LPV) systems. Depending on the information available about the fault, the FTC strategy could be passive FTC, active FTC without controller reconfiguration or active FTC with controller reconfiguration. The FTC strategy is designed taking into account the robust LPV polytopic framework extending known results from the robust polytopic and the traditional LPV polytopic control areas. The effectiveness of the proposed method is demonstrated by its application to a two-tank system simulator.

[1]  Vicenç Puig,et al.  Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter , 2012, Int. J. Appl. Math. Comput. Sci..

[2]  M. V. Iordache,et al.  Diagnosis and Fault-Tolerant Control , 2007, IEEE Transactions on Automatic Control.

[3]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[4]  Didier Theilliol,et al.  Fault Tolerant Control Design For Polytopic LPV Systems , 2007, Int. J. Appl. Math. Comput. Sci..

[5]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[6]  Jeff S. Shamma,et al.  A Linear Parameter Varying Approach to Gain Scheduled Missile Autopilot Design , 1992, 1992 American Control Conference.

[7]  Didier Henrion,et al.  LPV MODELING OF A TURBOFAN ENGINE , 2005 .

[8]  Ricardo Salvador Sánchez Peña,et al.  LPV control of a 6-DOF vehicle , 2002, IEEE Trans. Control. Syst. Technol..

[9]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[10]  J. Geromel,et al.  An LMI optimization approach to multiobjective controller design for discrete-time systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[11]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Michel Verhaegen,et al.  FAULT DETECTION AND IDENTIFICATION OF ACTUATOR FAULTS USING LINEAR PARAMETER VARYING MODELS , 2005 .

[14]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[15]  Ron J. Patton,et al.  FAULT-TOLERANT CONTROL SYSTEMS: THE 1997 SITUATION , 1997 .

[16]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[17]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[18]  Jie Chen,et al.  An LMI approach to fault-tolerant control of uncertain systems , 1998, Proceedings of the 1998 IEEE International Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) Intell.

[19]  R J Patton,et al.  LPV fault estimation and FTC of a two-link manipulator , 2010, Proceedings of the 2010 American Control Conference.

[20]  Ian Postlethwaite,et al.  Affine LPV modelling and its use in gain-scheduled helicopter control , 1998 .