Computational and theoretical modeling of intermediate filament networks: Structure, mechanics and disease

[1]  Matthew D Lew,et al.  The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. , 2012, Applied physics letters.

[2]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[3]  Z. Popovic,et al.  Crystal structure of a monomeric retroviral protease solved by protein folding game players , 2011, Nature Structural &Molecular Biology.

[4]  M. Buehler,et al.  Structure and stability of the lamin A tail domain and HGPS mutant. , 2011, Journal of structural biology.

[5]  M. Buehler,et al.  Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. , 2011, ACS nano.

[6]  D. Weitz,et al.  Biopolymer network geometries: characterization, regeneration, and elastic properties. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  David A Weitz,et al.  Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. , 2010, Journal of molecular biology.

[8]  Markus J. Buehler,et al.  Nanostructure and molecular mechanics of spider dragline silk protein assemblies , 2010, Journal of The Royal Society Interface.

[9]  M. Buehler,et al.  Molecular dynamics simulation of the α-helix to β-sheet transition in coiled protein filaments: evidence for a critical filament length scale. , 2010, Physical review letters.

[10]  Masoud Aryanpour,et al.  Development of a reactive force field for iron-oxyhydroxide systems. , 2010, The journal of physical chemistry. A.

[11]  U. Aebi,et al.  Atomic structure of vimentin coil 2. , 2010, Journal of structural biology.

[12]  Zhiping Xu,et al.  Alzheimer's abeta(1-40) amyloid fibrils feature size-dependent mechanical properties. , 2010, Biophysical journal.

[13]  Sinan Keten,et al.  Colloquium: Failure of molecules, bones, and the Earth itself , 2010, Reviews of Modern Physics.

[14]  M. Buehler,et al.  Molecular Dynamics Simulation of the alpha-Helix to beta-Sheet Transition in Coiled Protein Filaments: Evidence for a Critical Filament Length Scale , 2010 .

[15]  Sarah Rauscher,et al.  Molecular simulations of protein disorder. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[16]  F. Nakamura,et al.  Filamin A is required for vimentin-mediated cell adhesion and spreading. , 2010, American journal of physiology. Cell physiology.

[17]  C. Broedersz,et al.  Origins of elasticity in intermediate filament networks. , 2010, Physical review letters.

[18]  G. Gundersen,et al.  Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (LINC) complex proteins , 2009, Journal of Cell Science.

[19]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[20]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[21]  L. Kreplak,et al.  Severe myopathy mutations modify the nanomechanics of desmin intermediate filaments. , 2009, Journal of molecular biology.

[22]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[23]  M. Goldberg,et al.  A new model for nuclear lamina organization. , 2008, Biochemical Society transactions.

[24]  Markus J Buehler,et al.  Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. , 2008, Physical review letters.

[25]  R. Moll,et al.  The human keratins: biology and pathology , 2008, Histochemistry and Cell Biology.

[26]  Ueli Aebi,et al.  Tensile properties of single desmin intermediate filaments. , 2008, Biophysical journal.

[27]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[28]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[29]  Richard Leapman,et al.  Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. , 2007, Biochemistry.

[30]  Markus J Buehler,et al.  Threshold crack speed controls dynamical fracture of silicon single crystals. , 2007, Physical review letters.

[31]  Markus J. Buehler,et al.  Superelasticity, energy dissipation and strain hardening of vimentin coiled-coil intermediate filaments: atomistic and continuum studies , 2007, Journal of Materials Science.

[32]  Ueli Aebi,et al.  Intermediate filaments: from cell architecture to nanomechanics , 2007, Nature Reviews Molecular Cell Biology.

[33]  E. Kiseleva,et al.  Nuclear membrane disassembly and rupture. , 2007, Journal of molecular biology.

[34]  A. Hoenger,et al.  Dissecting the 3-D structure of vimentin intermediate filaments by cryo-electron tomography. , 2007, Journal of structural biology.

[35]  K. Schulten,et al.  Single-Molecule Experiments in Vitro and in Silico , 2007, Science.

[36]  Laurent Kreplak,et al.  Biomechanical properties of intermediate filaments: from tissues to single filaments and back , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[38]  Tom Misteli,et al.  Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome , 2006, Proceedings of the National Academy of Sciences.

[39]  Hector H. Huang,et al.  Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Hans Janssen,et al.  Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin , 2005, The Journal of cell biology.

[41]  M. Omary,et al.  Intermediate filament proteins and their associated diseases. , 2004, The New England journal of medicine.

[42]  D. Wirtz,et al.  Nuclear Envelope Breakdown Requires Overcoming the Mechanical Integrity of the Nuclear Lamina* , 2004, Journal of Biological Chemistry.

[43]  Dennis E Discher,et al.  The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber , 2004, Journal of Cell Science.

[44]  Robert D. Goldman,et al.  Intermediate filaments mediate cytoskeletal crosstalk , 2004, Nature Reviews Molecular Cell Biology.

[45]  Laura Scott,et al.  Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome , 2003, Nature.

[46]  G. Bates,et al.  Huntingtin aggregation and toxicity in Huntington's disease , 2003, The Lancet.

[47]  Ueli Aebi,et al.  Molecular architecture of intermediate filaments , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Michael R. Shirts,et al.  Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. , 2002, Journal of molecular biology.

[49]  S. Zinn-Justin,et al.  The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. , 2002, Structure.

[50]  K. Wilson,et al.  Lamins and Disease Insights into Nuclear Infrastructure , 2001, Cell.

[51]  Y. Sanejouand,et al.  Building‐block approach for determining low‐frequency normal modes of macromolecules , 2000, Proteins.

[52]  J. Hearle A critical review of the structural mechanics of wool and hair fibres. , 2000, International journal of biological macromolecules.

[53]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[54]  R. Lal,et al.  Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM. , 1999, Biochemistry.

[55]  G. Wiche,et al.  Role of plectin in cytoskeleton organization and dynamics. , 1998, Journal of cell science.

[56]  D. Graham,et al.  Axonal cytoskeletal changes after non-disruptive axonal injury , 1997, Journal of neurocytology.

[57]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[58]  H. Ishikawa,et al.  MITOSIS AND INTERMEDIATE-SIZED FILAMENTS IN DEVELOPING SKELETAL MUSCLE , 1968, The Journal of cell biology.

[59]  M. Buehler,et al.  Mechanical properties of crosslinks controls failure mechanism of hierarchical intermediate filament networks , 2012, Theoretical and Applied Mechanics Letters.

[60]  A. V. van Duin,et al.  Tunable nanomechanics of protein disulfide bonds in redox microenvironments. , 2012, Journal of the mechanical behavior of biomedical materials.

[61]  M. Buehler,et al.  Muscle dystrophy single point mutation in the 2B segment of lamin A does not affect the mechanical properties at the dimer level. , 2008, Journal of biomechanics.

[62]  Ning Wang,et al.  Mechanics of vimentin intermediate filaments , 2004, Journal of Muscle Research & Cell Motility.

[63]  R. Zwanzig,et al.  Levinthal's paradox. , 1992, Proceedings of the National Academy of Sciences of the United States of America.