We identify complete fragments of the Simple Theory of Types with Infinity ($\mathrm{TSTI}$) and Quine's $\mathrm{NF}$ set theory. We show that $\mathrm{TSTI}$ decides every sentence $\phi$ in the language of type theory that is in one of the following forms:
(A) $\phi= \forall x_1^{r_1} \cdots \forall x_k^{r_k} \exists y_1^{s_1} \cdots \exists y_l^{s_l} \theta$ where the superscripts denote the types of the variables, $s_1 > \ldots > s_l$ and $\theta$ is quantifier-free,
(B) $\phi= \forall x_1^{r_1} \cdots \forall x_k^{r_k} \exists y_1^{s} \cdots \exists y_l^{s} \theta$ where the superscripts denote the types of the variables and $\theta$ is quantifier-free.
This shows that $\mathrm{NF}$ decides every stratified sentence $\phi$ in the language of set theory that is in one of the following forms:
(A') $\phi= \forall x_1 \cdots \forall x_k \exists y_1 \cdots \exists y_l \theta$ where $\theta$ is quantifier-free and $\phi$ admits a stratification that assigns distinct values to all of the variable $y_1, \ldots, y_l$,
(B') $\phi= \forall x_1 \cdots \forall x_k \exists y_1 \cdots \exists y_l \theta$ where $\theta$ is quantifier-free and $\phi$ admits a stratification that assigns the same value to all of the variables $y_1, \ldots, y_l$.
[1]
Willard Van Orman Quine,et al.
New Foundations for Mathematical Logic
,
1937
.
[2]
E. Specker.
The Axiom of Choice in Quine's New Foundations for Mathematical Logic.
,
1953,
Proceedings of the National Academy of Sciences of the United States of America.
[3]
A. R. D. Mathias,et al.
The strength of Mac Lane set theory
,
2001,
Ann. Pure Appl. Log..
[4]
J. Barkley Rosser.
Review: Ernst P. Specker, The Axiom of choice in Quine's New Foundations for Mathematical Logic
,
1954
.
[5]
T. E. Forster.
Set Theory with a Universal Set: Exploring an Untyped Universe
,
1992
.
[6]
Maurice Boffa,et al.
Sur la théorie des ensembles de Quine
,
1975
.
[7]
Alonzo Church,et al.
Set Theory with a Universal Set
,
1974
.
[8]
G. B. M..
Principia Mathematica
,
1911,
Nature.
[9]
Maurice Boffa.
Review of T. E. Forster, Set theory with a Universal Set: Exploring an Untyped Universe
,
1994
.