NCG 5.0: updates of a manually curated repository of cancer genes and associated properties from cancer mutational screenings

The Network of Cancer Genes (NCG, http://ncg.kcl.ac.uk/) is a manually curated repository of cancer genes derived from the scientific literature. Due to the increasing amount of cancer genomic data, we have introduced a more robust procedure to extract cancer genes from published cancer mutational screenings and two curators independently reviewed each publication. NCG release 5.0 (August 2015) collects 1571 cancer genes from 175 published studies that describe 188 mutational screenings of 13 315 cancer samples from 49 cancer types and 24 primary sites. In addition to collecting cancer genes, NCG also provides information on the experimental validation that supports the role of these genes in cancer and annotates their properties (duplicability, evolutionary origin, expression profile, function and interactions with proteins and miRNAs).

[1]  Peer Bork,et al.  SMART: recent updates, new developments and status in 2015 , 2014, Nucleic Acids Res..

[2]  Diethard Tautz,et al.  Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa , 2010, BMC Biology.

[3]  Qihua Tan,et al.  Classification of Breast Cancer Subtypes by combining Gene Expression and DNA Methylation Data , 2014, J. Integr. Bioinform..

[4]  D. Rawlings,et al.  Foamy viral vector integration sites in SCID-repopulating cells after MGMTP140K-mediated in vivo selection , 2015, Gene Therapy.

[5]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[6]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[7]  Francesca D. Ciccarelli,et al.  Modification of Gene Duplicability during the Evolution of Protein Interaction Network , 2011, PLoS Comput. Biol..

[8]  Matteo D'Antonio,et al.  Integrated analysis of recurrent properties of cancer genes to identify novel drivers , 2012, Genome Biology.

[9]  F. Collins,et al.  A new initiative on precision medicine. , 2015, The New England journal of medicine.

[10]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[11]  James C. Costello,et al.  TERT promoter mutations and telomerase reactivation in urothelial cancer , 2015, Science.

[12]  Kara Dolinski,et al.  The BioGRID interaction database: 2015 update , 2014, Nucleic Acids Res..

[13]  Francesca D. Ciccarelli,et al.  NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes , 2014, Database J. Biol. Databases Curation.

[14]  E. Lander,et al.  Lessons from the Cancer Genome , 2013, Cell.

[15]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[16]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[17]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[18]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[19]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[20]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[21]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[22]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[23]  R. Scott,et al.  Expanding the genetic basis of copy number variation in familial breast cancer , 2014, Hereditary cancer in clinical practice.

[24]  Dmitri D. Pervouchine,et al.  The human transcriptome across tissues and individuals , 2015, Science.

[25]  A. Schambach,et al.  Clonal Dominance With Retroviral Vector Insertions Near the ANGPT1 and ANGPT2 Genes in a Human Xenotransplant Mouse Model , 2014, Molecular therapy. Nucleic acids.

[26]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[27]  S. Minoshima,et al.  A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3-q24.1. , 2003, Biochemical and biophysical research communications.

[28]  L. Stein,et al.  Annotating Cancer Variants and Anti-Cancer Therapeutics in Reactome , 2012, Cancers.

[29]  Diethard Tautz,et al.  An Ancient Evolutionary Origin of Genes Associated with Human Genetic Diseases , 2008, Molecular biology and evolution.

[30]  T. Hubbard,et al.  A census of human cancer genes , 2004, Nature Reviews Cancer.

[31]  Hui Yu,et al.  Algorithms for network-based identification of differential regulators from transcriptome data: a systematic evaluation , 2014, Science China Life Sciences.

[32]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[33]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[34]  T. Moritz,et al.  Efficiency and safety of O⁶-methylguanine DNA methyltransferase (MGMT(P140K))-mediated in vivo selection in a humanized mouse model. , 2014, Human gene therapy.

[35]  Miguel Melo,et al.  Frequency of TERT promoter mutations in human cancers , 2013, Nature Communications.

[36]  A. Masotti,et al.  Single-Nucleotide Polymorphisms Within MicroRNAs Sequences and Their 3' UTR Target Sites May Regulate Gene Expression in Gastrointestinal Tract Cancers , 2014, Iranian Red Crescent medical journal.

[37]  Damian Szklarczyk,et al.  eggNOG v4.0: nested orthology inference across 3686 organisms , 2013, Nucleic Acids Res..

[38]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[39]  Ramakrishna Ramaswamy,et al.  Two-layer modular analysis of gene and protein networks in breast cancer , 2014, BMC Systems Biology.

[40]  Pierre Baldi,et al.  A Genomic Analysis Pipeline and Its Application to Pediatric Cancers , 2014, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[41]  Thomas D. Wu,et al.  A comprehensive transcriptional portrait of human cancer cell lines , 2014, Nature Biotechnology.

[42]  Andrea Ciliberto,et al.  Low duplicability and network fragility of cancer genes. , 2008, Trends in genetics : TIG.

[43]  Hsien-Da Huang,et al.  miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions , 2013, Nucleic Acids Res..

[44]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[45]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[46]  J-R Zhang,et al.  Bioinformatics analysis of gene expression profiles in hepatocellular carcinoma. , 2015, European review for medical and pharmacological sciences.

[47]  Jing Pan,et al.  Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. , 2012, Carcinogenesis.

[48]  N. McGranahan,et al.  Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. , 2015, Cancer cell.

[49]  Feng Tian,et al.  Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers , 2015, Scientific Reports.

[50]  Zhongming Zhao,et al.  Studying tumorigenesis through network evolution and somatic mutational perturbations in the cancer interactome. , 2014, Molecular biology and evolution.

[51]  Damian Szklarczyk,et al.  STITCH 4: integration of protein–chemical interactions with user data , 2013, Nucleic Acids Res..

[52]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[53]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[54]  Hans-Werner Mewes,et al.  CORUM: the comprehensive resource of mammalian protein complexes , 2007, Nucleic Acids Res..

[55]  Qing-Yu He,et al.  DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis , 2015, Bioinform..

[56]  Francesca D. Ciccarelli,et al.  Network of Cancer Genes: a web resource to analyze duplicability, orthology and network properties of cancer genes , 2009, Nucleic Acids Res..

[57]  Wei Liu,et al.  Predicting potential cancer genes by integrating network properties, sequence features and functional annotations , 2013, Science China Life Sciences.

[58]  S. Ramaswamy,et al.  Systematic identification of genomic markers of drug sensitivity in cancer cells , 2012, Nature.

[59]  R. K. De,et al.  Disease co-morbidity and the human Wnt signaling pathway: a network-wise study. , 2013, Omics : a journal of integrative biology.

[60]  MoritzThomas,et al.  Efficiency and Safety of O6-Methylguanine DNA Methyltransferase (MGMTP140K)-Mediated In Vivo Selection in a Humanized Mouse Model , 2013 .

[61]  Joshua F. McMichael,et al.  DGIdb - Mining the druggable genome , 2013, Nature Methods.

[62]  F. Ciccarelli,et al.  Recessive cancer genes engage in negative genetic interactions with their functional paralogs. , 2013, Cell reports.