Kaplan-Meier V- and U-statistics

In this paper, we study Kaplan-Meier V- and U-statistics respectively defined as $\theta(\widehat{F}_n)=\sum_{i,j}K(X_{[i:n]},X_{[j:n]})W_iW_j$ and $\theta_U(\widehat{F}_n)=\sum_{i\neq j}K(X_{[i:n]},X_{[j:n]})W_iW_j/\sum_{i\neq j}W_iW_j$, where $\widehat{F}_n$ is the Kaplan-Meier estimator, $\{W_1,\ldots,W_n\}$ are the Kaplan-Meier weights and $K:(0,\infty)^2\to\mathbb R$ is a symmetric kernel. As in the canonical setting of uncensored data, we differentiate between two asymptotic behaviours for $\theta(\widehat{F}_n)$ and $\theta_U(\widehat{F}_n)$. Additionally, we derive an asymptotic canonical V-statistic representation of the Kaplan-Meier V- and U-statistics. By using this representation we study properties of the asymptotic distribution. Applications to hypothesis testing are given.

[1]  R. V. Mises On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .

[2]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[3]  Pranab Kumar Sen,et al.  Limiting behavior of regular functionals of empirical distributions for stationary *-mixing processes , 1972 .

[4]  James A. Koziol,et al.  A Cramér-von Mises statistic for randomly censored data , 1976 .

[5]  K. Yoshihara Limiting behavior of U-statistics for stationary, absolutely regular processes , 1976 .

[6]  R. Gill Censoring and stochastic integrals , 1980 .

[7]  R. Gill Large Sample Behaviour of the Product-Limit Estimator on the Whole Line , 1983 .

[8]  Gerhard Keller,et al.  Rigorous statistical procedures for data from dynamical systems , 1986 .

[9]  Bradley Efron,et al.  FISHER'S INFORMATION IN TERMS OF THE HAZARD RATE' , 1990 .

[10]  Irène Gijbels,et al.  ALMOST SURE ASYMPTOTIC REPRESENTATION FOR A CLASS OF FUNCTIONALS OF THE KAPLAN-MEIER ESTIMATOR , 1991 .

[11]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[12]  W. Stute,et al.  The strong law under random censorship , 1993 .

[13]  Song Yang A central limit theorem for functionals of the Kaplan--Meier estimator , 1994 .

[14]  Winfried Stute,et al.  The Central Limit Theorem Under Random Censorship , 1995 .

[15]  A. Bose,et al.  The Strong Law of Large Numbers for Kaplan–Meier U-Statistics , 1999 .

[16]  Michael G. Akritas,et al.  The central limit theorem under censoring , 2000 .

[17]  Somnath Datta,et al.  The Kaplan–Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average , 2001, The American statistician.

[18]  Isha Dewan,et al.  Central limit theorem for U-statistics of associated random variables , 2002 .

[19]  A. Bose,et al.  Asymptotic distribution of the Kaplan-Meier U-statistics , 2002 .

[20]  O. Aalen,et al.  Survival and Event History Analysis: A Process Point of View , 2008 .

[21]  Svante Janson PROBABILITY ASYMPTOTICS: NOTES ON NOTATION , 2009 .

[22]  G. Satten,et al.  Inverse Probability of Censoring Weighted U‐statistics for Right‐Censored Data with an Application to Testing Hypotheses , 2010 .

[23]  Herold Dehling,et al.  Central limit theorem and the bootstrap for U-statistics of strongly mixing data , 2008, J. Multivar. Anal..

[24]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[25]  E. Beutner,et al.  Deriving the asymptotic distribution of U- and V-statistics of dependent data using weighted empirical processes , 2012, 1207.5899.

[26]  Eric Beutner,et al.  Continuous mapping approach to the asymptotics of U- and V-statistics , 2012, 1203.1112.

[27]  Ursula Faber,et al.  Theory Of U Statistics , 2016 .

[28]  Katharina Burger,et al.  Counting Processes And Survival Analysis , 2016 .

[29]  Nonparametric Independence Testing for Right-Censored Data using Optimal Transport. , 2019, 1906.03866.

[30]  M. Matabuena Energy distance and kernel mean embeddings for two-sample survival testing , 2019, 1901.00833.

[31]  Nicolás Rivera,et al.  A reproducing kernel Hilbert space log‐rank test for the two‐sample problem , 2019, Scandinavian Journal of Statistics.