On Classical and Quantum Liftings

We analyze the procedure of lifting in classical stochastic and quantum systems. It enables one to 'lift' a state of a system into a state of 'system + reservoir'. This procedure is important both in quantum information theory and the theory of open systems. We illustrate the general theory of liftings by a particular class related to so-called circulant states.

[1]  B. Baumgartner,et al.  A special simplex in the state space for entangled qudits , 2006 .

[2]  Andrzej Kossakowski,et al.  A class of positive atomic maps , 2007, 0711.4483.

[3]  Takashi Matsuoka,et al.  A Class of Bell Diagonal States and Entanglement Witnesses , 2010, Open Syst. Inf. Dyn..

[4]  Daniel A. Lidar,et al.  Vanishing quantum discord is necessary and sufficient for completely positive maps. , 2008, Physical review letters.

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  Karol Życzkowski,et al.  Dynamics beyond completely positive maps : some properties and applications , 2008 .

[7]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[8]  E. Sudarshan,et al.  Completely positive maps and classical correlations , 2007, quant-ph/0703022.

[9]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[10]  Andrzej Kossakowski,et al.  On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..

[11]  Masanori Ohya,et al.  Compound Channels, Transition Expectations, and Liftings , 1999 .

[12]  Andrzej Kossakowski,et al.  Long-time memory in non-Markovian evolutions , 2009, 0906.5122.

[13]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[14]  Dariusz Chruściński,et al.  Spectral Conditions for Positive Maps , 2008, 0809.4909.

[15]  Giacomo Mauro D'Ariano,et al.  Superbroadcasting of mixed states. , 2005, Physical review letters.

[16]  Dariusz Chruściński,et al.  Non-Markovian quantum dynamics: local versus nonlocal. , 2009, Physical review letters.

[17]  Dariusz Chruscinski,et al.  Generalized circulant densities and a sufficient condition for separability , 2008, 0808.3597.

[18]  Dénes Petz,et al.  State extensions and a Radon-Nikodým theorem for conditional expectations on von Neumann algebras. , 1989 .

[19]  Dénes Petz,et al.  Classes of conditional expectations over von Neumann algebras , 1990 .

[20]  Giuseppe Marmo,et al.  Relations Between Quantum Maps and Quantum States , 2005, Open Syst. Inf. Dyn..

[21]  D. Chruściński,et al.  Circulant states with positive partial transpose , 2007, 0705.3534.

[22]  Gniewomir Sarbicki,et al.  Constructing optimal entanglement witnesses , 2009, 0907.2369.

[23]  V. P. Belavkin,et al.  Entanglement, quantum entropy and mutual information , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Masanori Ohya,et al.  QUANTUM DYNAMICAL ENTROPY FOR COMPLETELY POSITIVE MAP , 1999 .

[25]  Pechukas,et al.  Reduced dynamics need not be completely positive. , 1994, Physical review letters.

[26]  Masanori Ohya,et al.  ENTANGLED MARKOV CHAINS ARE INDEED ENTANGLED , 2006 .

[27]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[28]  E. Sudarshan,et al.  Who's afraid of not completely positive maps? , 2005 .

[29]  O. G. Smolyanov,et al.  States of quantum systems and their liftings , 2001 .

[30]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[31]  Andrzej Kossakowski,et al.  Geometry of quantum states: New construction of positive maps , 2009, 0902.0885.

[32]  Andrzej Kossakowski,et al.  Spectral conditions for entanglement witnesses versus bound entanglement , 2009 .

[33]  L. Accardi Topics in quantum probability , 1981 .

[34]  Masanori Ohya,et al.  ENTANGLEMENTS AND COMPOUND STATES IN QUANTUM INFORMATION THEORY , 2000 .

[35]  R. Alicki,et al.  Comment on "Reduced dynamics need not be completely positive" , 1995, Physical review letters.