Design of memetic algorithms for the efficient optimization of chemical process synthesis problems with structural restrictions

Abstract In Urselmann et al., 2011a , Urselmann et al., 2011b we presented a memetic algorithm (MA) for the design optimization of reactive distillation columns. The MA is a combination of a problem-specific evolutionary algorithm (EA) that optimizes the design variables and a mathematical programming (MP) method that solves the continuous sub-problems with fixed discrete decisions which are proposed by the EA to local optimality. In comparison to the usual superstructure formulation, the search space of the MA is significantly reduced without excluding feasible solutions. The algorithm computes many different local optima and can handle structural restrictions and discontinuous cost functions. In this contribution, a systematic procedure to modify the MA to solve more complex design problems is described and demonstrated using the example of a reactive distillation column with an optional side- or pre-reactor with structural restrictions on the number of streams. New concepts to handle connected and optional unit operations are proposed.

[1]  W. Marquardt,et al.  Efficient Optimization-Based Design of Distillation Columns for Homogenous Azeotropic Mixtures , 2006 .

[2]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[3]  Johan Grievink,et al.  Optimal design and sensitivity analysis of reactive distillation units using collocation models , 2001 .

[4]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[5]  Arthur Westerberg,et al.  A retrospective on design and process synthesis , 2004, Comput. Chem. Eng..

[6]  Wolfgang Marquardt,et al.  Conceptual design of distillation-based hybrid separation processes. , 2013, Annual review of chemical and biomolecular engineering.

[7]  Sebastian Engell,et al.  Optimization-based design of reactive distillation columns using a memetic algorithm , 2011, Comput. Chem. Eng..

[8]  Ignacio E. Grossmann,et al.  Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets , 1998 .

[9]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[10]  Nikolaos V. Sahinidis,et al.  Global optimization , 2009, Optim. Methods Softw..

[11]  Ignacio E. Grossmann,et al.  Mixed-integer programming approach for the synthesis of integrated process flowsheets , 1985 .

[12]  Ignacio E. Grossmann,et al.  Multilevel-hierarchical MINLP synthesis of process flowsheets , 1997 .

[13]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[14]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[15]  Zdravko Kravanja,et al.  An integrated strategy for the hierarchical multilevel MINLP synthesis of overall process flowsheets using the combined synthesis/analysis approach , 2004, Comput. Chem. Eng..

[16]  Ulrich Hoffmann,et al.  Kinetics of methyl tertiary butyl ether liquid phase synthesis catalyzed by ion exchange resin—I. Intrinsic rate expression in liquid phase activities , 1990 .

[17]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[18]  Ignacio E. Grossmann,et al.  Global superstructure optimization for the design of integrated process water networks , 2011 .

[19]  Johann Stichlmair,et al.  Mixed-Integer Nonlinear Programming Optimization of Reactive Distillation Processes , 2001 .

[20]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[21]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[22]  Wei Chen,et al.  A non‐stationary covariance‐based Kriging method for metamodelling in engineering design , 2007 .

[23]  Jeffrey J. Siirola,et al.  Process synthesis prospective , 2004, Comput. Chem. Eng..

[24]  T. Ray,et al.  A framework for design optimization using surrogates , 2005 .

[25]  I. Grossmann,et al.  Design of Hybrid Distillation—Vapor Membrane Separation Systems , 2009 .

[26]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[27]  Ignacio E. Grossmann,et al.  Preliminary screening procedure for the MINLP synthesis of process systems—I. aggregation and decomposition techniques , 1994 .

[28]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[29]  Ignacio E. Grossmann,et al.  A disjunctive programming approach for the optimal design of reactive distillation columns , 2001 .

[30]  Michael A. Saunders,et al.  A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints , 1982 .

[31]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[32]  Sundar Krishnamurty,et al.  Preference-Based Surrogate Modeling in Engineering Design , 2007 .

[33]  John E. Mitchell,et al.  An improved branch and bound algorithm for mixed integer nonlinear programs , 1994, Comput. Oper. Res..

[34]  Wolfgang Marquardt,et al.  Model-based structural optimization of seawater desalination plants , 2012 .

[35]  Sebastian Engell,et al.  Flowsheet Optimization by Memetic Algorithms , 2011 .

[36]  Lorenz T. Biegler,et al.  Distributed stream method for tray optimization , 2002 .

[37]  K. Schittkowski The nonlinear programming method of Wilson, Han, and Powell with an augmented Lagrangian type line search function , 1982 .

[38]  Oliver Stein,et al.  Continuous reformulations of discrete-continuous optimization problems , 2004, Comput. Chem. Eng..

[39]  Sebastian Engell,et al.  Modellierungsansätze für die Design-Optimierung von reaktiven Rektifikationskolonnen , 2008 .

[40]  Amy R. Ciric,et al.  Synthesis of nonequilibrium reactive distillation processes by MINLP optimization , 1994 .

[41]  James M. Douglas,et al.  Conceptual Design of Chemical Processes , 1988 .

[42]  Sven Leyffer,et al.  Solving mixed integer nonlinear programs by outer approximation , 1994, Math. Program..

[43]  Michael F. Malone,et al.  Conceptual design of distillation systems , 2001 .

[44]  Juan P. Ruiz,et al.  Generalized Disjunctive Programming: A Framework for Formulation and Alternative Algorithms for MINLP Optimization , 2012 .

[45]  I. Grossmann,et al.  ADVANCES IN MATHEMATICAL PROGRAMMING FOR THE SYNTHESIS OF PROCESS SYSTEMS , 1999 .

[46]  T. Westerlund,et al.  An extended cutting plane method for solving convex MINLP problems , 1995 .

[47]  Wolfgang Marquardt,et al.  Conceptual Design of a Butyl-levulinate Reactive Distillation Process by Incremental Refinement , 2011 .

[48]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[49]  Robert S. Huss,et al.  Multiple steady states in reactive distillation: kinetic effects , 2002 .

[50]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.