Switch between the Types of the Symmetry Breaking Bifurcation in Optically Induced Photorefractive Rotational Double-Well Potential

We study the possibility of switching the types of symmetry breaking bifurcation (SBB) in the cylinder shell waveguide with helical double-well potential along propagation direction. This model is described by the one-dimensional nonlinear Schrodinger (NLS) equation. The symmetry- and antisymmetry-breakings can be caused by increasing the applied voltage onto the waveguide in the self-focusing and -defocusing cases, respectively. In the self-focusing case, the type of SBB can be switched from supercritical to subcritical. While in the self-defocusing case, the type of SBB can not be switched because only one type of SBB is found.

[1]  Yaron Silberberg,et al.  Discrete Solitons in Optics , 2008 .

[2]  P. Kevrekidis,et al.  Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. , 2006, Physical review letters.

[3]  B A Malomed,et al.  Symmetry breaking in linearly coupled dynamical lattices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Boris A. Malomed,et al.  Spontaneous symmetry breaking in a nonlinear double-well structure , 2008, 0810.0859.

[5]  Boris A. Malomed,et al.  Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity , 2006, Math. Comput. Simul..

[6]  S. Schwartz,et al.  One-dimensional description of a Bose–Einstein condensate in a rotating closed-loop waveguide , 2006, cond-mat/0606262.

[7]  B. A. Malomed,et al.  Spontaneous symmetry breaking of gap solitons and phase transitions in double-well traps , 2008, 0802.1821.

[8]  T. Lakoba,et al.  Universally‐Convergent Squared‐Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations , 2007, nlin/0702033.

[9]  Alexander L. Fetter Rotating trapped Bose-Einstein condensates , 2009 .

[10]  Z. Musslimani,et al.  Random-phase solitons in nonlinear periodic lattices , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[11]  Jianying Zhou,et al.  Defect-mediated discrete solitons in optically induced photorefractive lattices , 2009 .

[12]  Boris A. Malomed,et al.  Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites , 2011, 1105.0266.

[13]  Wei Pang,et al.  Two-component solitons under a spatially modulated linear coupling: Inverted photonic crystals and fused couplers , 2012, 1205.1899.

[14]  B. M. Fulk MATH , 1992 .

[15]  Marek Trippenbach,et al.  Spontaneous symmetry breaking of solitons trapped in a double-channel potential , 2007, 0704.1601.

[16]  M. Segev,et al.  Observation of vortex-ring "discrete" solitons in 2D photonic lattices , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[17]  B. A. Malomed,et al.  Spontaneous symmetry breaking in photonic lattices: Theory and experiment , 2004, cond-mat/0412381.

[18]  Xiaobing Luo,et al.  Formation and structure of vortex lattices in a rotating double-well Bose-Einstein condensate , 2012, 1204.4522.

[19]  Mordechai Segev,et al.  Discrete solitons in photorefractive optically induced photonic lattices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Boris A. Malomed,et al.  Guiding-center solitons in rotating potentials , 2007 .

[21]  J. Fleischer,et al.  Nonlinear light propagation in rotating waveguide arrays , 2009, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[22]  Baowen Li,et al.  Symmetry breaking and self-trapping of a dipolar Bose-Einstein condensate in a double-well potential , 2009 .

[23]  B. A. Malomed,et al.  Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials , 2010, 1004.3520.

[24]  Mark Edwards,et al.  Symmetry-breaking and Symmetry-restoring Dynamics of a Mixture of Bose-Einstein Condensates in a Double Well , 2008, 0811.1921.

[25]  P. Kevrekidis,et al.  Symmetry breaking in symmetric and asymmetric double-well potentials. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  H. Sakaguchi,et al.  Melting transition of vortex lattice in point vortex systems , 2012, 1209.5503.

[27]  Hiroki Saito,et al.  Emergence of BLOCH bands in a rotating Bose-Einstein condensate. , 2004, Physical review letters.

[28]  Boris A. Malomed,et al.  Symmetry breaking in dipolar matter-wave solitons in dual-core couplers , 2012, 1212.5568.

[29]  Boris A. Malomed,et al.  Double symmetry breaking of solitons in one-dimensional virtual photonic crystals , 2011 .

[30]  B. A. Malomed,et al.  Competition between the symmetry breaking and onset of collapse in weakly coupled atomic condensates , 2010, 1003.3835.

[31]  Mordechai Segev,et al.  Optical spatial solitons: historical overview and recent advances , 2012, Reports on progress in physics. Physical Society.

[32]  Boris A. Malomed,et al.  Nonlinear modes and symmetry breaking in rotating double-well potentials , 2012, 1208.1498.

[33]  Hidetsugu Sakaguchi,et al.  Symmetry breaking of solitons in two-component Gross-Pitaevskii equations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  T A Birks,et al.  Structural rocking filters in highly birefringent photonic crystal fiber. , 2003, Optics letters.