Complex Luminaires

Simulating a complex luminaire such as a chandelier is expensive and slow, even using state-of-the-art algorithms. A more practical alternative is to use precomputation to accelerate rendering. Prior approaches cached information on an aperture surface that separates the luminaire from the scene, but many luminaires have large or ill-defined apertures leading to excessive data storage and inaccurate results. In this article, we separate luminaire rendering into illumination and appearance components. A precomputation stage simulates the complex light flow inside the luminaire to generate two data structures: a set of anisotropic point lights (APLs) and a radiance volume. The APLs are located near apparent sources and represent the light leaving the luminaire, allowing its nearand far-field illumination to be accurately and efficiently computed at render time. The luminaire's appearance consists of high- and low-frequency components, which are both visually important. High-frequency components are computed dynamically at render time, while the more computationally expensive low-frequency components are approximated using the precomputed radiance volume. Results are shown for several complex luminaires, demonstrating orders of magnitude faster rendering compared to the best global illumination algorithms and higher fidelity with greatly reduced storage requirements compared to previous precomputed approaches.

[1]  G. W. Larson,et al.  Rendering with radiance - the art and science of lighting visualization , 2004, Morgan Kaufmann series in computer graphics and geometric modeling.

[2]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Comput. Graph. Forum.

[3]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[4]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[5]  I. Ashdown,et al.  Near-Field Photometry: A New Approach , 1993 .

[6]  Thomas Driemeyer Rendering with mental ray® , 2001, mental ray® Handbooks.

[7]  Steve Marschner,et al.  Eurographics Symposium on Rendering (2007) Jan Kautz and Sumanta Pattanaik (Editors) Abstract Rendering Discrete Random Media Using Precomputed Scattering Solutions , 2022 .

[8]  Donald P. Greenberg,et al.  A Comprehensive Light-Source Description for Computer Graphics , 1984, IEEE Computer Graphics and Applications.

[9]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[10]  Alexander A. Mury,et al.  Representing the light field in finite three-dimensional spaces from sparse discrete samples. , 2009, Applied optics.

[11]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[12]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[13]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[14]  Hans-Peter Seidel,et al.  Accurate light source acquisition and rendering , 2003, SIGGRAPH 2003.

[15]  Shuang Zhao,et al.  Automatic bounding of programmable shaders for efficient global illumination , 2009, ACM Trans. Graph..

[16]  Ian Ashdown,et al.  Making Near-Field Photometry Practical , 1998 .

[17]  Toshiya Hachisuka,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[18]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[19]  Donald P. Greenberg,et al.  The Irradiance Volume , 1998, IEEE Computer Graphics and Applications.

[20]  Wei-Chao Chen,et al.  Light field mapping: efficient representation and hardware rendering of surface light fields , 2002, SIGGRAPH.

[21]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[22]  Hans-Peter Seidel,et al.  Accurate light source acquisition and rendering , 2003, ACM Trans. Graph..

[23]  Miloš Hašan,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, SIGGRAPH 2009.

[24]  Don P. Mitchell,et al.  Sampling-Efficient Mapping of Spherical Images , 2001 .

[25]  Adam Arbree,et al.  To appear in the ACM SIGGRAPH conference proceedings Lightcuts: A Scalable Approach to Illumination , 2022 .

[26]  Steve Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, ACM Trans. Graph..

[27]  Bernd Girod,et al.  Inter-view wavelet compression of light fields with disparity-compensated lifting , 2003, Visual Communications and Image Processing.

[28]  Mark Stanley Rea,et al.  The IESNA lighting handbook : reference & application , 2000 .

[29]  H. Jensen,et al.  Stochastic progressive photon mapping , 2009, ACM Trans. Graph..

[30]  Bruce Walter,et al.  Virtual spherical lights for many-light rendering of glossy scenes , 2009, ACM Trans. Graph..

[31]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[32]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[33]  B. Walter,et al.  Fast agglomerative clustering for rendering , 2008, 2008 IEEE Symposium on Interactive Ray Tracing.

[34]  Pat Hanrahan,et al.  An efficient representation for irradiance environment maps , 2001, SIGGRAPH.

[35]  S. Brun Pre-Conference Workshop , 2012 .

[36]  Eugene Fiume,et al.  SOHO: Orthogonal and symmetric Haar wavelets on the sphere , 2008, TOGS.

[37]  James Demmel,et al.  IEEE Standard for Floating-Point Arithmetic , 2008 .

[38]  Shing-Chow Chan,et al.  Light Field , 2014, Computer Vision, A Reference Guide.

[39]  S. Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, SIGGRAPH 2008.

[40]  Steve Marschner,et al.  Efficient multiple scattering in hair using spherical harmonics , 2008, ACM Trans. Graph..

[41]  Peter Shirley,et al.  A Low Distortion Map Between Disk and Square , 1997, J. Graphics, GPU, & Game Tools.

[42]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[43]  Thomas Driemeyer Rendering with mental ray® (mental ray® Handbooks) , 2005 .

[44]  Peter-Pike J. Sloan,et al.  Efficient Spherical Harmonic Evaluation , 2013 .

[45]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[46]  Gustavo Patow,et al.  Fast Inverse Reflector Design (FIRD) , 2008, CEIG.

[47]  Edgar Velazquez Armendariz Complex Luminaires: Illumination And Appearance Rendering , 2014 .

[48]  Hans-Peter Seidel,et al.  Canned Lightsources , 1998, Rendering Techniques.

[49]  Julius Muschaweck,et al.  What's in a ray set: moving towards a unified ray set format , 2011, Optical Systems Design.

[50]  Gustavo Patow,et al.  Compression and Importance Sampling of Near‐Field Light Sources , 2008, Comput. Graph. Forum.

[51]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[52]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[53]  Ian Ashdown,et al.  Near-Field Photometry: Measuring and Modeling Complex 3-D Light Sources , 1995, SIGGRAPH 1995.

[54]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[55]  Edgar Velázquez-Armendáriz,et al.  Implementing the render cache and the edge-and-point image on graphics hardware , 2006, Graphics Interface.

[56]  Anton Kaplanyan,et al.  Path Space Regularization for Holistic and Robust Light Transport , 2013, Comput. Graph. Forum.

[57]  Pat Hanrahan,et al.  All-frequency shadows using non-linear wavelet lighting approximation , 2003, ACM Trans. Graph..

[58]  Bernd Girod,et al.  Light field compression using disparity-compensated lifting and shape adaptation , 2006, IEEE Transactions on Image Processing.

[59]  Edgar Velázquez-Armendáriz,et al.  Tensor Clustering for Rendering Many‐Light Animations , 2008 .

[60]  Tomas Pavelka,et al.  Near Field Photometry , 2015 .

[61]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[62]  L. M. M.-T. Spherical Harmonics: an Elementary Treatise on Harmonic Functions, with Applications , 1928, Nature.

[63]  S. Marschner,et al.  Simulating multiple scattering in hair using a photon mapping approach , 2006, SIGGRAPH 2006.

[64]  Marcus A. Magnor,et al.  Efficient and Accurate Rendering of Complex Light Sources , 2009, Comput. Graph. Forum.

[65]  Hans-Peter Seidel,et al.  Interactive visualization of complex real-world light sources , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[66]  Michael E. Coltrin,et al.  Solid-state lighting: an energy-economics perspective , 2010 .