Decompositions of graphs and hypergraphs

This thesis contains various new results in the areas of design theory and edge decompositions of graphs and hypergraphs. Most notably, we give a new proof of the existence conjecture, dating back to the 19th century. For \(r\)-graphs \(F\) and \(G\), an \(F\)-decomposition of G is a collection of edge-disjoint copies of F in G covering all edges of \(G\). In a recent breakthrough, Keevash proved that every sufficiently large quasirandom \(r\)-graph G has a \(K\)\(_f\)\(^{(r)}\) -decomposition (subject to necessary divisibility conditions), thus proving the existence conjecture. We strengthen Keevash's result in two major directions: Firstly, our main result applies to decompositions into any \(r\)-graph \(F\), which generalises a fundamental theorem of Wilson to hypergraphs. Secondly, our proof framework applies beyond quasirandomness, enabling us e.g. to deduce a minimum degree version. For graphs, we investigate the minimum degree setting further. In particular, we determine the decomposition threshold' of every bipartite graph, and show that the threshold of cliques is equal to its fractional analogue. We also present theorems concerning optimal path and cycle decompositions of quasirandom graphs. This thesis is based on joint work with Daniela Kuhn and Deryk Osthus, Allan Lo and Richard Montgomery.

[1]  David Conlon,et al.  Cycle packing , 2013, Random Struct. Algorithms.

[2]  Peter J. Dukes,et al.  Rational decomposition of dense hypergraphs and some related eigenvalue estimates , 2011 .

[3]  Deryk Osthus,et al.  The existence of designs via iterative absorption , 2016 .

[4]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[5]  Shachar Lovett,et al.  Probabilistic existence of regular combinatorial structures , 2011, ArXiv.

[6]  S. Tipnis,et al.  On Path Decompositions of Graphs and Multigraphs , 2015 .

[7]  D. Kuhn,et al.  Proof of the 1-factorization and Hamilton Decomposition Conjectures , 2014, 1401.4183.

[8]  D. K. Ray-Chaudhuri,et al.  The Existence of Resolvable Block Designs , 1973 .

[9]  M. Plantholt Overfull conjecture for graphs with high minimum degree , 2004 .

[10]  P. Erdös,et al.  The Representation of a Graph by Set Intersections , 1966, Canadian Journal of Mathematics.

[11]  Daniela Kühn,et al.  Optimal path and cycle decompositions of dense quasirandom graphs , 2015, Electron. Notes Discret. Math..

[12]  Luc Teirlinck Non-trivial t-designs without repeated blocks exist for all t , 1987, Discret. Math..

[13]  Robin J. Wilson,et al.  The Early history of block designs , 2003 .

[14]  Thomas Niessen How to Find overfull Subgraphs in Graphs with Large Maximum Degree , 1994, Discret. Appl. Math..

[15]  Daniela Kühn,et al.  Fractional clique decompositions of dense graphs and hypergraphs , 2015, J. Comb. Theory, Ser. B.

[16]  S. Hakimi On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .

[17]  P. Erdos,et al.  On Some of My Conjectures in Number Theory and Combinatorics , 2022 .

[18]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[19]  Pu Gao,et al.  Arboricity and spanning-tree packing in random graphs with an application to load balancing , 2013, SODA.

[20]  Paul Erdös,et al.  Vertex coverings by monochromatic cycles and trees , 1991, J. Comb. Theory, Ser. B.

[21]  H. Hanani DECOMPOSITION OF HYPERGRAPHS INTO OCTAHEDRA * , 1979 .

[22]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[23]  Benny Sudakov,et al.  Decomposing Random Graphs into Few Cycles and Edges , 2014, Combinatorics, Probability and Computing.

[24]  A. Hilton,et al.  Regular Graphs of High Degree are 1‐Factorizable , 1985 .

[25]  Nathan Linial,et al.  An upper bound on the number of Steiner triple systems , 2011, Random Struct. Algorithms.

[26]  V. Vu New bounds on nearly perfect matchings in hypergraphs: higher codegrees do help , 2000 .

[27]  Lutz Volkmann,et al.  Minimum degree conditions for the Overfull Conjecture for odd order graphs , 2003, Australas. J Comb..

[28]  Matthew Kwan Almost all Steiner triple systems have perfect matchings , 2016, Proceedings of the London Mathematical Society.

[29]  François Dross,et al.  Fractional Triangle Decompositions in Graphs with Large Minimum Degree , 2015, SIAM J. Discret. Math..

[30]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[31]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[32]  Daniela Kühn,et al.  Edge-decompositions of graphs with high minimum degree , 2014, Electron. Notes Discret. Math..

[33]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[34]  Nathaniel Dean,et al.  Gallai's conjecture for disconnected graphs , 2000, Discret. Math..

[35]  Raphael Yuster Decomposing Hypergraphs into Simple Hypertrees , 2000, Comb..

[36]  Vojtech Rödl,et al.  Note on Independent Sets in Steiner Systems , 1994, Random Struct. Algorithms.

[37]  János Komlós,et al.  Proof of the Alon-Yuster conjecture , 2001, Discret. Math..

[38]  Vojtech Rödl,et al.  Dirac-Type Questions For Hypergraphs — A Survey (Or More Problems For Endre To Solve) , 2010 .

[39]  Hiêp Hàn,et al.  On Perfect Matchings in Uniform Hypergraphs with Large Minimum Vertex Degree , 2009, SIAM J. Discret. Math..

[40]  Daniela Kühn,et al.  The minimum degree threshold for perfect graph packings , 2009, Comb..

[41]  Darryn Bryant,et al.  A proof of Lindner's conjecture on embeddings of partial Steiner triple systems , 2009 .

[42]  F. Harary COVERING AND PACKING IN GRAPHS, I. , 1970 .

[43]  Michael Tarsi,et al.  Graph Decomposition is NP-Complete: A Complete Proof of Holyer's Conjecture , 1997, SIAM J. Comput..

[44]  Noga Alon,et al.  AlmostH-factors in dense graphs , 1992, Graphs Comb..

[45]  T. Gustavsson Decompositions of large graphs and digraphs with high minimum degree , 1991 .

[46]  Daniela Kühn,et al.  Optimal covers with Hamilton cycles in random graphs , 2014, Comb..

[47]  Alan C. H. Ling,et al.  Asymptotic Existence of Resolvable Graph Designs , 2007, Canadian Mathematical Bulletin.

[48]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[49]  Yi Zhao,et al.  Recent advances on Dirac-type problems for hypergraphs , 2015, 1508.06170.

[50]  D. Kuhn,et al.  Optimal packings of bounded degree trees , 2016, Journal of the European Mathematical Society.

[51]  Michael Krivelevich,et al.  Triangle Factors in Random Graphs , 1997, Combinatorics, Probability and Computing.

[52]  Daniela Kühn,et al.  Clique decompositions of multipartite graphs and completion of Latin squares , 2016, J. Comb. Theory, Ser. A.

[53]  N. Alon The linear arboricity of graphs , 1988 .

[54]  Vojtech Rödl,et al.  Integer and Fractional Packings in Dense Graphs , 2001, Comb..

[55]  Rajeev Raman,et al.  The Power of Collision: Randomized Parallel Algorithms for Chaining and Integer Sorting , 1990, FSTTCS.

[56]  S. Schechter,et al.  On the Inversion of Certain Matrices , 2018 .

[57]  Daniela Kühn,et al.  On the decomposition threshold of a given graph , 2016, J. Comb. Theory, Ser. B.

[58]  Michael Stiebitz,et al.  Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture , 2012 .

[59]  Bruce A. Reed,et al.  Linear Arboricity of Random Regular Graphs , 1990, Random Struct. Algorithms.

[60]  Shachar Lovett,et al.  Probabilistic Existence of Large Sets of Designs , 2018, SODA.

[61]  N. Sauer,et al.  On the factorization of the complete graph , 1973 .

[62]  Peter Keevash The existence of designs , 2014, 1401.3665.

[63]  Dan Archdeacon Self-dual embeddings of complete multipartite graphs , 1994, J. Graph Theory.

[64]  B. Sudakov,et al.  A Construction of Almost Steiner Systems , 2013, 1303.4065.

[65]  Béla Bollobás,et al.  Random Graphs , 1985 .

[66]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[67]  Marek Karpinski,et al.  An XOR-based erasure-resilient coding scheme , 1995 .

[68]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[69]  Peter J. Dukes,et al.  Fractional triangle decompositions of dense $3$-partite graphs , 2015, Journal of Combinatorics.

[70]  Nicholas J. Cavenagh,et al.  Decomposing Graphs of High Minimum Degree into 4‐Cycles , 2015, J. Graph Theory.