Diffusion of carbon nanotubes with single-molecule fluorescence microscopy

Single walled carbon nanotubes (SWNTs) are a promising gene and drug delivery system since their physical dimensions mimic nucleic acids. Towards this aim, the hydrophobicity of SWNTs was averted by coating with ribonucleic acid (RNA) polymer [poly(rU)] or bovine serum albumin (BSA) and the consequent diffusion of these synthetic-biomolecular hybrids was studied by single-molecule fluorescence microscopy. The diffusion coefficient for SWNT-poly(rU) was measured at 0.374±0.045μm2∕s and for SWNT-BSA it was 0.442±0.046μm2∕s. Our diffusion study provides a fundamental guidance to gene delivery using SWNT as transporters.

[1]  M. Prato,et al.  Translocation of bioactive peptides across cell membranes by carbon nanotubes. , 2004, Chemical communications.

[2]  H. Dai,et al.  Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. , 2004, Journal of the American Chemical Society.

[3]  B. Eaton,et al.  RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles , 2004, Science.

[4]  P. Cullis,et al.  Drug Delivery Systems: Entering the Mainstream , 2004, Science.

[5]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[6]  L. Novotný,et al.  Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes , 2003, Science.

[7]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[8]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Huajian Gao,et al.  Spontaneous insertion of DNA oligonucleotides into carbon nanotubes , 2003 .

[10]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[11]  Michael T. McManus,et al.  Gene silencing in mammals by small interfering RNAs , 2002, Nature Reviews Genetics.

[12]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[13]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[14]  P. Ke,et al.  Hindered diffusion in polymer-tethered phospholipid monolayers at the air-water interface: A single molecule fluorescence imaging study , 2001 .

[15]  R. Smalley,et al.  Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping , 2001 .

[16]  Y. Ishii,et al.  Single molecule nanomanipulation of biomolecules. , 2001, Trends in biotechnology.

[17]  S. Smith,et al.  Single-molecule studies of DNA mechanics. , 2000, Current opinion in structural biology.

[18]  T. Cech,et al.  Peptide bond formation by in vitro selected ribozymes , 1997, Nature.

[19]  T. Tarasow,et al.  RNA-catalysed carbon–carbon bond formation , 1997, Nature.

[20]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[21]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[22]  M. Saxton Single-particle tracking: the distribution of diffusion coefficients. , 1997, Biophysical journal.

[23]  J. Szostak,et al.  Ribozyme-catalysed amino-acid transfer reactions , 1996, Nature.

[24]  Perkins,et al.  Self-diffusion of an entangled DNA molecule by reptation. , 1995, Physical review letters.

[25]  M. Illangasekare,et al.  Aminoacyl-RNA synthesis catalyzed by an RNA , 1995, Science.

[26]  B Efron,et al.  Statistical Data Analysis in the Computer Age , 1991, Science.

[27]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[28]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[29]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[30]  D C Carter,et al.  Structure of serum albumin. , 1994, Advances in protein chemistry.