Hall–Post inequalities: Review and application to molecules and tetraquarks
暂无分享,去创建一个
[1] Xiaoyun Chen. Analysis of hidden-bottom bb\bar{b}\bar{b} states , 2019 .
[2] Xiaoyun Chen. Analysis of hidden-bottom $bb\bar{b}\bar{b}$bbb¯b¯ states , 2019, The European Physical Journal A.
[3] Q. Zhao,et al. All-heavy tetraquarks , 2019, Physical Review D.
[4] Xiaoyun Chen. 2 0 A pr 2 01 9 Analysis of hidden-bottom bbb̄b̄ states , 2019 .
[5] J. Vijande,et al. Few-body quark dynamics for doubly-heavy baryons and tetraquarks , 2018, 1803.06155.
[6] J. Vijande,et al. String dynamics and metastability of all-heavy tetraquarks , 2017, 1703.00783.
[7] H. Xu,et al. Study of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qqqc\bar c$$\end{document} five quark system with three kinds , 2012, The European Physical Journal A.
[8] T. Rebane. Energy bounds for a system of gravitating bosons , 2010 .
[9] R. Hall,et al. Semirelativistic N-boson systems bound by attractive pair potentials , 2009, 0908.2815.
[10] S. Zouzou,et al. Optimized Lower Bounds for Five-Body Hamiltonians , 2009 .
[11] Jean-Marc Richard,et al. Stability of asymmetric tetraquarks in the minimal-path linear potential , 2009, 0901.3022.
[12] Kálmán Varga,et al. Solution of few-body problems with the stochastic variational method II: Two-dimensional systems , 2008, Comput. Phys. Commun..
[13] S. Zouzou,et al. Optimized lower bounds for N-body Hamiltonians , 2006 .
[14] S. Zouzou,et al. An analytical proof of saturability of an optimized lower bound for N-body Hamiltonians for some mass configurations, with arbitrary N , 2006 .
[15] R. Hall,et al. Semirelativistic stability of N-boson systems bound by 1/rij pair potentials , 2006, hep-th/0602272.
[16] T. Frederico,et al. Structure of Exotic Three-Body Systems , 2005, nucl-th/0511080.
[17] D. Gridnev. Sufficient condition for stability of N-body system with attractive pair potentials , 2003 .
[18] J. Richard. Critically bound four-body molecules , 2003, physics/0302004.
[19] A. Khare,et al. LETTER TO THE EDITOR: Testing Hall-Post inequalities with exactly solvable N-body problems , 2001, quant-ph/0105130.
[20] M. Waroquier,et al. Improved lower bounds for the ground-state energy of many-body systems , 2001, nucl-th/0102061.
[21] K. Varga,et al. Lower bound on fermion binding energies , 2000, quant-ph/0008048.
[22] K. Varga,et al. Binding three or four bosons without bound subsystems , 2000 .
[23] S. Nussinov,et al. QCD Inequalities , 1999, hep-ph/9911532.
[24] J. Basdevant,et al. Optimized Lower Bound for Four-Body Hamiltonians , 1998 .
[25] Alain J. Martin,et al. Particle Physics and the Schrödinger Equation , 1998 .
[26] K. Varga,et al. Solution of few-body problems with the stochastic variational method I. Central forces with zero orbital momentum , 1997, nucl-th/9702034.
[27] J. Basdevant,et al. lP interpolation and optimized bounds on pairwise interacting fermion systems , 1996 .
[28] D. Riska,et al. The Spectrum of the nucleons and the strange hyperons and chiral dynamics , 1995, hep-ph/9505422.
[29] Richard,et al. Weakly bound three-body systems with no bound subsystems. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[30] Hall. Spectral geometry and the N-body problem. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[31] Richard,et al. Limits on the domain of coupling constants for binding N-body systems with no bound subsystems. , 1994, Physical review letters.
[32] Seifert,et al. Proof of stability of the hydrogen molecule. , 1993, Physical review letters.
[33] J. Basdevant,et al. Improved bounds on many-body hamiltonians: (I). Self-gravitating bosons , 1990 .
[34] J. Basdevant,et al. Improved bounds on many-body hamiltonians: (II). Baryons from mesons in the quark model , 1990 .
[35] B. Simon,et al. Texts and Monographs in Physics , 1987 .
[36] J. Richard. On the masses of mesons and baryons in potential models , 1984 .
[37] J. M. Richard,et al. Do narrow heavy multiquark states exist , 1982 .
[38] W. Thirring,et al. Quantum mechanics of atoms and molecules , 1981 .
[39] A. Martin,et al. Inequalities on heavy quark-antiquark systems , 1980 .
[40] R. Hill. Systematic improvement of Hall–Post–Stenschke lower bounds to eigenvalues in the few‐body problem , 1980 .
[41] J. Bernard,et al. Test of a method for finding lower bounds to eigenvalues of the three‐body problem , 1980 .
[42] R. Hall. Lower energy bounds for translation‐invariant atomlike systems , 1978 .
[43] M. Fukugita,et al. Colour chemistry — A study of metastable multiquark molecules , 1978 .
[44] M. R. Manning. Incorrect lower bounds for the N-fermion problem , 1978 .
[45] E. Balbutsev. On the paper by RJM Carr: 'derivation of energy lower bound models for translation-invariant many-fermion systems' , 1978 .
[46] M. R. Manning. Improved lower bounds for the N-fermion problem , 1978 .
[47] R. J. Carr. Derivation of energy lower bound models for translation-invariant many-fermion systems , 1978 .
[48] R. Hill. Proof that the H− ion has only one bound state. Details and extension to finite nuclear mass , 1977 .
[49] R. Hill. Proof that the H − Ion Has Only One Bound State , 1977 .
[50] H. Dosch,et al. Composite hadrons in non-Abelian lattice gauge theories , 1976 .
[51] X. Artru. String model with baryons: Topology; classical motion , 1975 .
[52] R. Hall. Rigorous lower bounds on the energies of the N-body problem , 1969 .
[53] C. Marchioro,et al. Lower Bounds to the Ground‐State Energy of Systems Containing Identical Particles , 1969 .
[54] J. Lévy-Leblond. Nonsaturation of Gravitational Forces , 1969 .
[55] H. Post,et al. Many-particle systems: IV. Short-range interactions , 1967 .
[56] R. Hall. Energy lower bounds for translation-invariant N-fermion systems , 1967 .
[57] Y. C. Tang,et al. Upper and Lower Bound of the Eigenvalue of a Three-Body System , 1964 .
[58] A. J. Coleman. THE STRUCTURE OF FERMION DENSITY MATRICES , 1963 .
[59] M. H. Kalos,et al. Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .
[60] H. Post. Many-Particle Systems: II , 1956 .
[61] S. I. Rubinow,et al. Equivalent Two-Body Method for the Triton , 1955 .
[62] L. H. Thomas. The Interaction Between a Neutron and a Proton and the Structure of H**3 , 1935 .