Use of PSO in parameter estimation of robot dynamics; Part two: Robustness

In this paper, we analyze the robustness of the PSO-based approach to parameter estimation of robot dynamics presented in “Part One”. We have made attempts to make the PSO method more robust by experimenting with potential cost functions. The simulated system is a cylindrical robot; through simulation, the robot is excited, samples are taken, error is added to the samples, and the noisy samples are used for estimating the robot parameters through the presented method. Comparisons are made with the least squares, total least squares, and robust least squares methods of estimation.

[1]  H. Nahvi,et al.  A PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MIXED VARIABLE NONLINEAR PROBLEMS , 2011 .

[2]  Wisama Khalil,et al.  Identification of the dynamic parameters of a closed loop robot , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  Alessandro De Luca,et al.  A modified newton-euler method for dynamic computations in robot fault detection and control , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[5]  Antonella Ferrara,et al.  MIMO Closed Loop Identification of an Industrial Robot , 2011, IEEE Transactions on Control Systems Technology.

[6]  Sabine Van Huffel,et al.  Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.

[7]  Maxime Gautier,et al.  Experimental Identification of the Inverse Dynamic Model: Minimal Encoder Resolution Needed Application to an Industrial Robot Arm and a Haptic Interface , 2008 .

[8]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[9]  Zafer Bingul,et al.  Dynamic identification of Staubli RX-60 robot using PSO and LS methods , 2011, Expert Syst. Appl..

[10]  Ganapati Panda,et al.  Robust identification of nonlinear complex systems using low complexity ANN and particle swarm optimization technique , 2011, Expert Syst. Appl..

[11]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[12]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[13]  L. El Ghaoui,et al.  Robust least squares and applications , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[14]  M. Taylan Das,et al.  Identification and Control of an Electro Hydraulic Robot Particle Swarm Optimization-neural Network(PSO-NN) Approach , 2011, ICINCO.

[15]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[16]  Q. Henry Wu,et al.  MCPSO: A multi-swarm cooperative particle swarm optimizer , 2007, Appl. Math. Comput..

[17]  Takeo Kanade,et al.  Parameter identification of robot dynamics , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  J. Poshtan,et al.  Control and System Identification via Swarm and Evolutionary Algorithms , 2011 .

[19]  Stephen Taylor,et al.  Robot algorithms for localization of multiple emission sources , 2011, ACM Comput. Surv..

[20]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[21]  Peter I. Corke,et al.  A robotics toolbox for MATLAB , 1996, IEEE Robotics Autom. Mag..

[22]  Hossein Jahandideh,et al.  Use of PSO in parameter estimation of robot dynamics; Part one: No need for parameterization , 2012, 2012 16th International Conference on System Theory, Control and Computing (ICSTCC).

[23]  Ganesh K. Venayagamoorthy,et al.  Obstacle Avoidance in Collective Robotic Search Using Particle Swarm Optimization , 2006 .

[24]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[25]  Alireza Alfi,et al.  Parameter Identification Based on a Modified PSO Applied to Suspension System , 2010, J. Softw. Eng. Appl..