A materials research paradigm driven by computation

Computational approaches in materials science and engineering have progressed significantly in recent decades and are shifting the materials research paradigm to the integration of computation, processing, and characterization. This paper presents a brief overview of the state-of-the-art of computational approaches and their power in enhancing research and development of commercial materials.

[1]  Mats Hillert,et al.  Phase equilibria, phase diagrams, and phase transformations , 1998 .

[2]  A. van de Walle,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[3]  Zi-Kui Liu,et al.  Software for thermodynamic and kinetic calculation and modelling , 2009 .

[4]  Yi Wang,et al.  First-principles study of ternary fcc solution phases from special quasirandom structures , 2007, 0709.2302.

[5]  P. Raghavan,et al.  An integrated framework for multi-scale materials simulation and design , 2004 .

[6]  T. Gómez-Acebo,et al.  Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties , 2007 .

[7]  Tasadduq Khan,et al.  Evolution of Ni-based superalloys for single crystal gas turbine blade applications , 1999 .

[8]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[9]  P. J. Spencer A brief history of CALPHAD , 2008 .

[10]  Mats Hillert,et al.  Phase equilibria, phase diagrams and phase transformations : Their thermodynamic basis, second edition , 2007 .

[11]  Klaus Hack,et al.  The SGTE Casebook : Thermodynamics at Work, Second Edition , 2008 .

[12]  Zi-kui Liu,et al.  Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations , 2004 .

[13]  A. van de Walle,et al.  Institute of Physics Publishing Modelling and Simulation in Materials Science and Engineering Self-driven Lattice-model Monte Carlo Simulations of Alloy Thermodynamic Properties and Phase Diagrams , 2002 .

[14]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[15]  M. Hillert,et al.  The Regular Solution Model for Stoichiometric Phases and Ionic Melts. , 1970 .

[16]  A. Dinsdale SGTE data for pure elements , 1991 .

[17]  Chris Wolverton,et al.  First principles impurity diffusion coefficients , 2009 .

[18]  Qi Li,et al.  In situ epitaxial MgB2 thin films for superconducting electronics , 2002, Nature materials.

[19]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[20]  Raymundo Arroyave,et al.  Ab initio thermodynamic properties of stoichiometric phases in the Ni–Al system , 2005 .

[21]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[22]  Jorge O. Sofo,et al.  First-principles study of binary bcc alloys using special quasirandom structures , 2004 .

[23]  Yi Wang,et al.  First-principles calculation of self-diffusion coefficients. , 2008, Physical review letters.

[24]  M. Hillert The compound energy formalism , 2001 .

[25]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[26]  J. Ågren,et al.  Models for numerical treatment of multicomponent diffusion in simple phases , 1992 .

[27]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[28]  Qi Li,et al.  Thermodynamics of the Mg–B system: Implications for the deposition of MgB2 thin films , 2001 .

[29]  Sánchez,et al.  Cluster expansions and the configurational energy of alloys. , 1993, Physical review. B, Condensed matter.

[30]  L. Kaufman The stability of metallic phases , 1969 .

[31]  M. Ohno,et al.  Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology , 2007 .

[32]  N. Saunders,et al.  CALPHAD : calculation of phase diagrams : a comprehensive guide , 1998 .

[33]  P. Jablonski,et al.  Homogenizing a Nickel-Based Superalloy: Thermodynamic and Kinetic Simulation and Experimental Results , 2009 .

[34]  Larry Kaufman,et al.  The lattice stability of metals—I. Titanium and zirconium☆ , 1959 .

[35]  Hans Leo Lukas,et al.  Computational Thermodynamics: The Calphad Method , 2007 .