Experimental and Numerical Fracture Mechanics—An Individually Dyed History

Almost half a century ago, fracture mechanics started in Germany with the foundation of the DVM Working Group Fracture Mechanics in 1969. The present authors have been partly involved in the further development of fracture and damage mechanics, one with particular interest in elastic-plastic fracture and modelling, the other in thin-walled structures, fatigue and assessment. They take the colloquium in honour of the 65th birthday of Professor Meinhard Kuna as occasion to highlight some significant achievements on the background of personal experience. In particular, they intend to show that both fracture and damage mechanics started with paradigm changes which were partly looked at with distrust in the beginning but turned out to be seminal.

[1]  K.-H. Schwalbe,et al.  On the Experimental Determination of CTOD Based R-Curves , 1986 .

[2]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[3]  R. McMeeking,et al.  On criteria for J-dominance of crack-tip fields in large-scale yielding , 1979 .

[4]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[5]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[6]  A. Cornec,et al.  Results of a round robin on stretch zone width determination , 1988 .

[7]  W. Brocks,et al.  On the transferability of fracture mechanics parameters from specimens to structures using fem , 1989 .

[8]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[9]  K. Kussmaul,et al.  Fracture Mechanics Verification by Large-Scale Testing , 1991 .

[10]  J. Hancock,et al.  The effect of non-singular stresses on crack-tip constraint , 1991 .

[11]  John R. Rice,et al.  Some further results of J-integral analysis and estimates. , 1973 .

[12]  R. Henkhaus,et al.  Bruchmechanik metallischer Werkstoffe. Von K.‐H. Schwalbe. 847 S., über 500 Abb., Carl Hanser Verlag, München 1980. Geb. DM 148 , 1983 .

[13]  O. Kolednik,et al.  APPLICATION OF ENERGY DISSIPATION RATE ARGUMENTS TO STABLE CRACK GROWTH , 1994 .

[14]  C. Shih,et al.  Family of crack-tip fields characterized by a triaxiality parameter—II. Fracture applications , 1992 .

[15]  E. Wolf Fatigue crack closure under cyclic tension , 1970 .

[16]  K.-H. Schwalbe,et al.  The Engineering Treatment Model , 2000 .

[17]  W. Brocks,et al.  Ductile tearing resistance of metal sheets , 2010 .

[18]  Schwalbe,et al.  THE ETM METHOD FOR ASSESSING THE SIGNIFICANCE OF CRACK-LIKE DEFECTS IN ENGINEERING STRUCTURES , 2008 .

[19]  J.D.G. Sumpter AN ALTERNATIVE VIEW OF R CURVE TESTING , 1999 .

[20]  Wolfgang Brocks,et al.  On J-dominance of crack-tip fields in largely yielded 3D structures , 1986 .

[21]  G Bernauer,et al.  Micro‐mechanical modelling of ductile damage and tearing – results of a European numerical round robin , 2002 .

[22]  W. Brocks,et al.  Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials , 1995 .

[23]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[24]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[25]  J. Rice,et al.  Limitations to the small scale yielding approximation for crack tip plasticity , 1974 .

[26]  Ingo Scheider,et al.  3.03 – Computational Aspects of Nonlinear Fracture Mechanics , 2003 .

[27]  Kumar,et al.  Engineering approach for elastic-plastic fracture analysis , 1981 .

[28]  Schwalbe THE ENGINEERING FLAW ASSESSMENT METHOD (EFAM) , 2008 .

[29]  T. Siegmund,et al.  A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture , 2000 .

[30]  C. Shih,et al.  Family of crack-tip fields characterized by a triaxiality parameter—I. Structure of fields , 1991 .

[31]  C. Dalle Donne,et al.  Biaxial load Effects on Plane Stress J-da-and CTOD5-da-Curves. , 1994 .

[32]  Sj Garwood Effect of Specimen Geometry on Crack Growth Resistance , 1979 .

[33]  Ka Peters,et al.  Application of the Electrical Potential Method to Crack Length Measurements Using Johnson's Formula , 1981 .

[34]  C. Shih,et al.  Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales , 1995 .

[35]  Wolfgang Brocks,et al.  Numerical investigations on the significance of J for large stable crack growth , 1989 .

[36]  A. J. Carlsson,et al.  Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials , 1973 .

[37]  G. Rousselier,et al.  Ductile fracture models and their potential in local approach of fracture , 1987 .

[38]  W. Brocks,et al.  Application of the Gurson Model to Ductile Tearing Resistance , 1995 .

[39]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[40]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[41]  J. Hancock,et al.  Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields , 1991 .

[42]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[43]  James C. Newman,et al.  Fracture mechanics testing on specimens with low constraint––standardisation activities within ISO and ASTM , 2005 .

[44]  W. Brocks,et al.  Cohesive Strength and Separation Energy as Characteristic Parameters of Fracture Toughness and Their Relation to Micromechanics , 2005 .

[45]  D.-Z. Sun,et al.  Significance Of The Characteristic Length ForMicromechanical Modelling Of DuctileFracture , 1970 .

[46]  Ga Clarke,et al.  Computerized Methods for J Ic Determination Using Unloading Compliance Techniques , 1980 .

[47]  G. Irwin ANALYSIS OF STRESS AND STRAINS NEAR THE END OF A CRACK TRAVERSING A PLATE , 1957 .

[48]  K.-H. Schwalbe,et al.  Methods for Material Characterization in the Range of High Crack Growth Rates , 1992 .

[49]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – II. Fracture- process calibration and verification , 1998 .

[50]  P. Leevers,et al.  Inherent stress biaxiality in various fracture specimen geometries , 1982 .

[51]  J. Newman Prediction of Crack Growth under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys , 1997 .

[52]  C. E. Turner A re-assessment of ductile tearing resistance. Part I: The geometry dependance of J-R curves in fully plastic bending , 2013 .

[53]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[54]  G. P. Cherepanov Crack propagation in continuous media , 1967 .

[55]  Robert M. McMeeking,et al.  Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture , 1977 .

[56]  M. Schödel,et al.  Characterization of stable crack extension in aluminium sheet material using the crack tip opening angle determined optically and by the δ5 clip gauge technique , 2009 .

[57]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[58]  P. Thomason,et al.  A three-dimensional model for ductile fracture by the growth and coalescence of microvoids , 1985 .

[59]  C. Inglis Stresses in a plate due to the presence of cracks and sharp corners , 1913 .

[60]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[61]  Nikolaos Aravas,et al.  Determination of higher-order terms in asymptotic elastoplastic crack tip solutions , 1991 .

[62]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[63]  Uwe Zerbst,et al.  Basic principles of analytical flaw assessment methods , 2000 .

[64]  W Schmitt,et al.  Application of Micromechanical Models to the Prediction of Ductile Fracture , 1992 .

[65]  K.-H. Schwalbe,et al.  DRAFT EGF RECOMMENDATIONS FOR DETERMINING THE FRACTURE RESISTANCE OF DUCTILE MATERIALS: EGF PROCEDURE EGF P1–87D , 1988 .

[66]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[67]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[68]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – I. Micromechanics calibration , 1998 .

[69]  W Schmitt,et al.  Quantitative Assessment of the Role of Crack Tip Constraint on Ductile Tearing , 1993 .

[70]  C. F. Shih,et al.  J-dominance under plane strain fully plastic conditions: the edge crack panel subject to combined tension and bending , 1985 .

[71]  M. D. German,et al.  Requirements for a one parameter characterization of crack tip fields by the HRR singularity , 1981, International Journal of Fracture.

[72]  John R. Rice,et al.  Elastic plastic analysis of growing cracks , 1980 .

[73]  Karl-Heinz Schwalbe,et al.  Introduction of δ 5 as an Operational Definition of the CTOD and Its Practical Use , 1995 .

[74]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[75]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[76]  C. E. Turner A re-assessment of ductile tearing resistance. Part II: energy dissipation rate and associated R-curves on normalised axes , 2013 .

[77]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[78]  John W. Hutchinson,et al.  Fully Plastic Solutions and Large Scale Yielding Estimates for Plane Stress Crack Problems , 1976 .

[79]  Viggo Tvergaard,et al.  An analysis of ductile rupture modes at a crack tip , 1987 .

[80]  W. Brocks,et al.  Simulation of cup cone fracture using the cohesive model , 2003 .

[81]  J. D. Harrison,et al.  The COD approach and its application to welded structures , 1979 .