Atomic layer deposition of a ruthenium thin film using a precursor with enhanced reactivity

Ruthenium (Ru) thin films were grown via atomic layer deposition (ALD) using a novel Ru precursor with enhanced reactivity, namely Ru(η5-cycloheptadienyl)2 (Ru(chd)2) and O2. Self-limiting growth during the Ru ALD process was achieved by varying the Ru precursor and O2 feeding times. Metallic Ru films with a low resistivity (10–16 μΩ cm) grew at deposition temperatures between 200 and 300 °C, where the growth per cycle (GPC) during Ru ALD was 0.2 to 0.4 A cy−1 at 265 °C. The Ru incubation times were considerably shorter using the novel precursor (negligible on Pt and TiN, ∼22 cycles on SiO2) compared with those associated with Ru ALD using a high-valency Ru precursor and O2. The characteristics of the Ru film were influenced by the substrate. Specifically, the Pt substrate gave rise to an amorphous film, while crystalline films were grown on the TiN and SiO2 substrates, where a high RuOx content resulted on the SiO2 substrate.

[1]  C. Hwang,et al.  Atomic layer deposition of Ru thin films using (2,4-dimethyloxopentadienyl)(ethylcyclopentadienyl)Ru and the effect of ammonia treatment during the deposition , 2020 .

[2]  J. F. Conley,et al.  Atomic Layer Deposition of Ruthenium and Ruthenium Oxide Using a Zero-Oxidation State Precursor , 2017 .

[3]  Soo‐Hyun Kim,et al.  Ruthenium and ruthenium dioxide thin films deposited by atomic layer deposition using a novel zero-valent metalorganic precursor, (ethylbenzene)(1,3-butadiene)Ru(0), and molecular oxygen , 2015 .

[4]  J. Han,et al.  Atomic Layer Deposition of Ruthenium and Ruthenium Oxide Thin Films from a Zero-Valent (1,5-Hexadiene)(1-isopropyl-4-methylbenzene)ruthenium Complex and O2 , 2014 .

[5]  Min Kyu Kim,et al.  Growth of highly conformal ruthenium-oxide thin films with enhanced nucleation by atomic layer deposition , 2014 .

[6]  Soo‐Hyun Kim,et al.  Atomic layer deposition of ruthenium (Ru) thin films using ethylbenzen-cyclohexadiene Ru(0) as a seed layer for copper metallization , 2013 .

[7]  Min Kyu Kim,et al.  Atomic layer deposition of Ru thin films using a Ru(0) metallorganic precursor and O2 , 2013 .

[8]  D. Kang,et al.  Thermal Atomic Layer Deposition (ALD) of Ru Films for Cu Direct Plating , 2011 .

[9]  G. Rubloff,et al.  Atomic Layer Deposition of Ruthenium Using the Novel Precursor bis(2,6,6-trimethyl-cyclohexadienyl)ruthenium , 2011 .

[10]  C. Hwang,et al.  Growth of RuO2 Thin Films by Pulsed-Chemical Vapor Deposition Using RuO4 Precursor and 5% H2 Reduction Gas , 2010 .

[11]  C. Hwang,et al.  Investigation on the Growth Initiation of Ru Thin Films by Atomic Layer Deposition , 2010 .

[12]  Jae Hyun Kim,et al.  Low Temperature Atomic Layer Deposition of Ruthenium Thin Films Using Isopropylmethylbenzene-Cyclohexadiene-Ruthenium and O2 , 2009 .

[13]  Sang-Joon Park,et al.  Atomic Layer Deposition of Ruthenium and Ruthenium-oxide ThinFilms by Using a Ru(EtCp)$_{2}$ Precursor and Oxygen Gas , 2009 .

[14]  C. Hwang,et al.  Chemical Vapor Deposition of Ru Thin Films with an Enhanced Morphology, Thermal Stability, and Electrical Properties Using a RuO4 Precursor , 2009 .

[15]  C. Hwang,et al.  Atomic Layer Deposition of Ru Thin Films Using 2,4-(Dimethylpentadienyl)(ethylcyclopentadienyl)Ru by a Liquid Injection System , 2007 .

[16]  C. Hwang,et al.  High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition , 2004 .

[17]  M. Ritala,et al.  Atomic layer deposition of ruthenium thin films from Ru(thd)(3) and oxygen , 2004 .

[18]  Jae-Hoon Kim,et al.  Atomic Layer Deposition of Ruthenium Thin Films for Copper Glue Layer , 2004 .

[19]  T. Moffat,et al.  Seedless Superfill: Copper Electrodeposition in Trenches with Ruthenium Barriers , 2003 .

[20]  M. Ritala,et al.  Reaction Mechanism Studies on Atomic Layer Deposition of Ruthenium and Platinum , 2003 .

[21]  M. Ritala,et al.  Ruthenium Thin Films Grown by Atomic Layer Deposition , 2003 .

[22]  U. Englert,et al.  Efficient Synthesis of Ruthenium(II) η5-Dienyl Compounds Starting from Di-μ-chlorodichloro- bis[(1−3η:6−8η)-2,7-dimethyloctadienediyl]diruthenium(IV). Versatile Precursors for Enantioselective Hydrogenation Catalysts , 2000 .

[23]  C. Hwang (Ba,Sr)TiO3 thin films for ultra large scale dynamic random access memory.: A review on the process integration , 1998 .

[24]  W. Gladfelter,et al.  Chemical Vapor Deposition of Ruthenium and Osmium Thin Films Using (Hexafluoro-2-butyne)tetracarbonylruthenium and -osmium , 1993 .

[25]  Malcolm L. H. Green,et al.  Nucleophilic addition to organotransition metal cations containing unsaturated hydrocarbon ligands : A survey and interpretation , 1978 .