The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour
暂无分享,去创建一个
[1] E. G. Evstatiev,et al. Stability and quasi-equidistant propagation of NLS soliton trains , 1998 .
[2] Iso-spectral deformations of general matrix and their reductions on Lie algebras , 1995, solv-int/9506005.
[3] Morikazu Toda,et al. Waves in Nonlinear Lattice , 1970 .
[4] A. Perelomov,et al. Classical integrable finite-dimensional systems related to Lie algebras , 1981 .
[5] W. Symes. The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .
[6] Rossen I. Ivanov,et al. The complex Toda chains and the simple Lie algebras - solutions and large time asymptotics , 1997, solv-int/9909020.
[7] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[8] Carlos Tomei,et al. The toda flow on a generic orbit is integrable , 1986 .
[9] Hermann Flaschka,et al. Variétés de drapeaux et réseaux de Toda , 1991 .
[10] An Elegant solution of the N body Toda problem , 1995, hep-th/9507092.
[11] Explicit solutions of classical generalized toda models , 1979 .
[12] B. Kostant,et al. The solution to a generalized Toda lattice and representation theory , 1979 .
[13] P. Deift,et al. Nonlinear wave equations and constrained harmonic motion , 1980, Proceedings of the National Academy of Sciences of the United States of America.
[14] A. Perelomov,et al. Two-dimensional generalized Toda lattice , 1981 .
[15] J. Moser,et al. Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .
[16] Toda lattices with indefinite metric II: topology of the iso-spectral manifolds , 1996, solv-int/9609001.
[17] Toda hierarchy with indefinite metric , 1995, solv-int/9505004.
[18] R. Farwell,et al. One-Dimensional Toda Molecule. II: The Solutions Applied to Bogomolny Monopoles with Spherical Symmetry , 1983 .
[19] A. Leznov,et al. Exact monopole solutions in gauge theories for an arbitrary semisimple compact group , 1979 .
[20] H. Flaschka. On the Toda Lattice. II Inverse-Scattering Solution , 1974 .
[21] Y. Kodama,et al. Explicit integration of the full symmetric Toda hierarchy and the sorting property , 1996 .
[22] The Toda lattice, Dynkin diagrams, singularities and Abelian varieties , 1991 .
[23] A. Mikhailov,et al. The reduction problem and the inverse scattering method , 1981 .
[24] Kaup,et al. Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation. , 1996, Physical review letters.
[25] H. Flaschka,et al. Torus orbits in G∕P , 1991 .
[26] H. Flaschka. The Toda lattice. II. Existence of integrals , 1974 .
[27] Potsdam,et al. Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains. , 1997, solv-int/9708004.
[28] J. M. Arnold,et al. Complex Toda lattice and its application to the theory of interacting optical solitons , 1998 .
[29] E. G. Evstatiev,et al. NONLINEAR SCHRODINGER EQUATION AND N-SOLITON INTERACTIONS : GENERALIZED KARPMAN-SOLOV'EV APPROACH AND THE COMPLEX TODA CHAIN , 1997 .
[30] R. Goodman,et al. Classical and quantum mechanical systems of Toda-lattice type , 1984 .
[31] R. Sasaki,et al. Instability of Solitons in Imaginary Coupling Affine toda Field Theory , 1995, hep-th/9507001.
[32] O. Bogoyavlensky. On perturbations of the periodic Toda lattice , 1976 .
[33] R. Farwell,et al. One-Dimensional Toda Molecule. I -- General Solution-- , 1983 .