The complex Toda chains and the simple Lie algebras: II. Explicit solutions and asymptotic behaviour

We propose a compact and explicit expression for the solutions of the complex Toda chains related to the classical series of simple Lie algebras . The solutions are parametrized by a minimal set of scattering data for the corresponding Lax matrix. They are expressed as sums over the weight systems of the fundamental representations of and are explicitly covariant under the corresponding Weyl group action. In deriving these results we start from the Moser formula for the A r series and obtain the results for the other classical series of Lie algebras by imposing appropriate involutions on the scattering data. Thus we also show how Moser's solution goes into that of Olshanetsky and Perelomov. The results for the large-time asymptotics of the A r -CTC solutions are extended to the other classical series B r -D r . We exhibit also some `irregular' solutions for the D 2n +1 algebras whose asymptotic regimes at t ± are qualitatively different. Interesting examples of bounded and periodic solutions are presented and the relations between the solutions for the algebras D 4 , B 3 and G 2 are analysed.

[1]  E. G. Evstatiev,et al.  Stability and quasi-equidistant propagation of NLS soliton trains , 1998 .

[2]  Iso-spectral deformations of general matrix and their reductions on Lie algebras , 1995, solv-int/9506005.

[3]  Morikazu Toda,et al.  Waves in Nonlinear Lattice , 1970 .

[4]  A. Perelomov,et al.  Classical integrable finite-dimensional systems related to Lie algebras , 1981 .

[5]  W. Symes The QR algorithm and scattering for the finite nonperiodic Toda Lattice , 1982 .

[6]  Rossen I. Ivanov,et al.  The complex Toda chains and the simple Lie algebras - solutions and large time asymptotics , 1997, solv-int/9909020.

[7]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[8]  Carlos Tomei,et al.  The toda flow on a generic orbit is integrable , 1986 .

[9]  Hermann Flaschka,et al.  Variétés de drapeaux et réseaux de Toda , 1991 .

[10]  An Elegant solution of the N body Toda problem , 1995, hep-th/9507092.

[11]  Explicit solutions of classical generalized toda models , 1979 .

[12]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[13]  P. Deift,et al.  Nonlinear wave equations and constrained harmonic motion , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Perelomov,et al.  Two-dimensional generalized Toda lattice , 1981 .

[15]  J. Moser,et al.  Three integrable Hamiltonian systems connected with isospectral deformations , 1975 .

[16]  Toda lattices with indefinite metric II: topology of the iso-spectral manifolds , 1996, solv-int/9609001.

[17]  Toda hierarchy with indefinite metric , 1995, solv-int/9505004.

[18]  R. Farwell,et al.  One-Dimensional Toda Molecule. II: The Solutions Applied to Bogomolny Monopoles with Spherical Symmetry , 1983 .

[19]  A. Leznov,et al.  Exact monopole solutions in gauge theories for an arbitrary semisimple compact group , 1979 .

[20]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[21]  Y. Kodama,et al.  Explicit integration of the full symmetric Toda hierarchy and the sorting property , 1996 .

[22]  The Toda lattice, Dynkin diagrams, singularities and Abelian varieties , 1991 .

[23]  A. Mikhailov,et al.  The reduction problem and the inverse scattering method , 1981 .

[24]  Kaup,et al.  Asymptotic Behavior of N-Soliton Trains of the Nonlinear Schrödinger Equation. , 1996, Physical review letters.

[25]  H. Flaschka,et al.  Torus orbits in G∕P , 1991 .

[26]  H. Flaschka The Toda lattice. II. Existence of integrals , 1974 .

[27]  Potsdam,et al.  Criterion and Regions of Stability for Quasi-Equidistant Soliton Trains. , 1997, solv-int/9708004.

[28]  J. M. Arnold,et al.  Complex Toda lattice and its application to the theory of interacting optical solitons , 1998 .

[29]  E. G. Evstatiev,et al.  NONLINEAR SCHRODINGER EQUATION AND N-SOLITON INTERACTIONS : GENERALIZED KARPMAN-SOLOV'EV APPROACH AND THE COMPLEX TODA CHAIN , 1997 .

[30]  R. Goodman,et al.  Classical and quantum mechanical systems of Toda-lattice type , 1984 .

[31]  R. Sasaki,et al.  Instability of Solitons in Imaginary Coupling Affine toda Field Theory , 1995, hep-th/9507001.

[32]  O. Bogoyavlensky On perturbations of the periodic Toda lattice , 1976 .

[33]  R. Farwell,et al.  One-Dimensional Toda Molecule. I -- General Solution-- , 1983 .