Fast ignitor target studies for the HiPER project
暂无分享,去创建一个
Guy Schurtz | Stefano Atzeni | Xavier Ribeyre | R. G. Evans | Ph. Nicolaï | Angelo Schiavi | J. J. Honrubia | J. R. Davies | S. Atzeni | A. Schiavi | X. Ribeyre | G. Schurtz | M. Olazabal-Loumé | C. Bellei | P. Nicolaï | R. Evans | M. Olazabal-Loumé | C. Bellei | J. Davies | J. Honrubia
[1] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[2] Gerard Mourou,et al. Compression of amplified chirped optical pulses , 1985 .
[3] S. Atzeni. REVIEW ARTICLE: The physical basis for numerical fluid simulations in laser fusion , 1987 .
[4] Miquel,et al. Experimental Confirmation of Ponderomotive-Force Electrons Produced by an Ultrarelativistic Laser Pulse on a Solid Target. , 1996, Physical review letters.
[5] P. B. Radha,et al. Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems , 2005 .
[6] Richard D. Petrasso,et al. Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion , 2006 .
[7] Stefano Atzeni,et al. Overview of ignition conditions and gain curves for the fast ignitor , 2005 .
[8] M. FOSTER. The Velocity of Thought , 1870, Nature.
[9] N. Miyanaga,et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.
[10] Michael H. Key,et al. Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .
[11] M. Key,et al. The Generation and Transport of Large Currents in Dense Materials: The Physics of Electron Transport Relative to Fast Ignition , 2006 .
[12] D. Del Sarto,et al. Fluid and kinetic simulation of inertial confinement fusion plasmas , 2005, Comput. Phys. Commun..
[13] J. J. Honrubia. A synthetically accelerated scheme for radiative transfer calculations , 1993 .
[14] Stefano Atzeni,et al. Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .
[15] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[16] Hiroyuki Shiraga,et al. Hydrodynamics of Conically Guided Fast Ignition Targets , 2006 .
[17] Gregory A. Moses,et al. Inertial confinement fusion , 1982 .
[18] G. Mourou,et al. Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.
[19] J. Meyer-ter-Vehn,et al. The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .
[20] R. Betti,et al. Gain curves for direct-drive fast ignition at densities around 300 g/cc , 2006 .
[21] A. E. Dangor,et al. A study of picosecond lasersolid interactions up to 1019 W cm-2 , 1997 .
[22] G. Pert,et al. Algorithms for the self-consistent generation of magnetic fields in plasmas , 1981 .
[23] R. Betti,et al. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .
[24] Vladimir T. Tikhonchuk,et al. Compression phase study of the HiPER baseline target , 2008 .
[25] B. Hammel,et al. The NIF Ignition Program: progress and planning , 2006 .
[26] S. Slutz,et al. Radiation driven capsules for fast ignition fusion , 2003 .
[27] S. Wilks,et al. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas , 1997 .
[28] M. Olazabal-Loumé,et al. Stability study of planar targets using standard and adiabat shaping pulses , 2007 .
[29] H. Shiraga,et al. Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.
[30] Stefano Atzeni,et al. Fast Ignition: Overview and Background , 2006 .
[31] Davies,et al. Experimental evidence of electric inhibition in fast electron penetration and of electric-field-limited fast electron transport in dense matter , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[32] Kunioki Mima,et al. Simulation and design study of cryogenic cone shell target for Fast Ignition Realization Experiment project , 2007 .
[33] Jérôme Néauport,et al. Synthetic aperture compression scheme for a multipetawatt high-energy laser. , 2006 .
[34] W. Kruer,et al. The Physics of Laser Plasma Interactions , 2019 .
[35] R. Stephens,et al. Implosion of indirectly driven reentrant-cone shell target. , 2003, Physical review letters.
[36] R. Betti,et al. Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets , 2007 .
[37] A. R. Bell,et al. Fast-electron transport in high-intensity short-pulse laser - solid experiments , 1997 .
[38] J. Ongena,et al. Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source , 2010 .
[39] Tabak,et al. Absorption of ultra-intense laser pulses. , 1992, Physical review letters.
[40] R. Betti,et al. Laser-Induced Adiabat Shaping by Relaxation in Inertial Fusion Implosions , 2004 .
[41] S. Wilks,et al. Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma. , 2006, Physical review letters.
[42] Stefano Atzeni,et al. Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel , 1999 .
[43] R. G. Evans,et al. Modelling electron transport for fast ignition , 2007 .
[44] J. Meyer-ter-Vehn,et al. Three-dimensional fast electron transport for ignition-scale inertial fusion capsules , 2006, physics/0605249.
[45] C. Cavailler,et al. Inertial fusion with the LMJ , 2005 .
[46] J R Davies,et al. Electric and magnetic field generation and target heating by laser-generated fast electrons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.