Fast ignitor target studies for the HiPER project

Target studies for the proposed High Power Laser Energy Research (HiPER) facility [M. Dunne, Nature Phys. 2, 2 (2006)] are outlined and discussed. HiPER will deliver a 3ω (wavelength λ=0.35μm), multibeam, multi-ns pulse of about 250kJ and a 2ω or 3ω pulse of 70–100kJ in about 15ps. Its goal is the demonstration of laser driven inertial fusion via fast ignition. The baseline target concept is a direct-drive single shell capsule, ignited by hot electrons generated by a conically guided ultraintense laser beam. The paper first discusses ignition and compression requirements, and presents gain curves, based on an integrated model including ablative drive, compression, ignition and burn, and taking the coupling efficiency ηig of the igniting beam as a parameter. It turns out that ignition and moderate gain (up to 100) can be achieved, provided that adiabat shaping is used in the compression, and the efficiency ηig exceeds 20%. Using a standard ponderomotive scaling for the hot electron temperature, a 2ω or 3ω ...

[1]  Michael D. Perry,et al.  Ignition and high gain with ultrapowerful lasers , 1994 .

[2]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[3]  S. Atzeni REVIEW ARTICLE: The physical basis for numerical fluid simulations in laser fusion , 1987 .

[4]  Miquel,et al.  Experimental Confirmation of Ponderomotive-Force Electrons Produced by an Ultrarelativistic Laser Pulse on a Solid Target. , 1996, Physical review letters.

[5]  P. B. Radha,et al.  Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems , 2005 .

[6]  Richard D. Petrasso,et al.  Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion , 2006 .

[7]  Stefano Atzeni,et al.  Overview of ignition conditions and gain curves for the fast ignitor , 2005 .

[8]  M. FOSTER The Velocity of Thought , 1870, Nature.

[9]  N. Miyanaga,et al.  Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition , 2001, Nature.

[10]  Michael H. Key,et al.  Status of and prospects for the fast ignition inertial fusion concepta) , 2007 .

[11]  M. Key,et al.  The Generation and Transport of Large Currents in Dense Materials: The Physics of Electron Transport Relative to Fast Ignition , 2006 .

[12]  D. Del Sarto,et al.  Fluid and kinetic simulation of inertial confinement fusion plasmas , 2005, Comput. Phys. Commun..

[13]  J. J. Honrubia A synthetically accelerated scheme for radiative transfer calculations , 1993 .

[14]  Stefano Atzeni,et al.  Targets for direct-drive fast ignition at total laser energy of 200-400 kJ , 2007 .

[15]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[16]  Hiroyuki Shiraga,et al.  Hydrodynamics of Conically Guided Fast Ignition Targets , 2006 .

[17]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[18]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[19]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[20]  R. Betti,et al.  Gain curves for direct-drive fast ignition at densities around 300 g/cc , 2006 .

[21]  A. E. Dangor,et al.  A study of picosecond lasersolid interactions up to 1019 W cm-2 , 1997 .

[22]  G. Pert,et al.  Algorithms for the self-consistent generation of magnetic fields in plasmas , 1981 .

[23]  R. Betti,et al.  High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .

[24]  Vladimir T. Tikhonchuk,et al.  Compression phase study of the HiPER baseline target , 2008 .

[25]  B. Hammel,et al.  The NIF Ignition Program: progress and planning , 2006 .

[26]  S. Slutz,et al.  Radiation driven capsules for fast ignition fusion , 2003 .

[27]  S. Wilks,et al.  Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas , 1997 .

[28]  M. Olazabal-Loumé,et al.  Stability study of planar targets using standard and adiabat shaping pulses , 2007 .

[29]  H. Shiraga,et al.  Nuclear fusion: Fast heating scalable to laser fusion ignition , 2002, Nature.

[30]  Stefano Atzeni,et al.  Fast Ignition: Overview and Background , 2006 .

[31]  Davies,et al.  Experimental evidence of electric inhibition in fast electron penetration and of electric-field-limited fast electron transport in dense matter , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Kunioki Mima,et al.  Simulation and design study of cryogenic cone shell target for Fast Ignition Realization Experiment project , 2007 .

[33]  Jérôme Néauport,et al.  Synthetic aperture compression scheme for a multipetawatt high-energy laser. , 2006 .

[34]  W. Kruer,et al.  The Physics of Laser Plasma Interactions , 2019 .

[35]  R. Stephens,et al.  Implosion of indirectly driven reentrant-cone shell target. , 2003, Physical review letters.

[36]  R. Betti,et al.  Gain curves and hydrodynamic simulations of ignition and burn for direct-drive fast-ignition fusion targets , 2007 .

[37]  A. R. Bell,et al.  Fast-electron transport in high-intensity short-pulse laser - solid experiments , 1997 .

[38]  J. Ongena,et al.  Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source , 2010 .

[39]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[40]  R. Betti,et al.  Laser-Induced Adiabat Shaping by Relaxation in Inertial Fusion Implosions , 2004 .

[41]  S. Wilks,et al.  Collisional relaxation of superthermal electrons generated by relativistic laser pulses in dense plasma. , 2006, Physical review letters.

[42]  Stefano Atzeni,et al.  Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel , 1999 .

[43]  R. G. Evans,et al.  Modelling electron transport for fast ignition , 2007 .

[44]  J. Meyer-ter-Vehn,et al.  Three-dimensional fast electron transport for ignition-scale inertial fusion capsules , 2006, physics/0605249.

[45]  C. Cavailler,et al.  Inertial fusion with the LMJ , 2005 .

[46]  J R Davies,et al.  Electric and magnetic field generation and target heating by laser-generated fast electrons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.