The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility

The MIA complex, composed of FAP100 and FAP73, interacts with I1 dynein components and is required for normal ciliary beat frequency.

[1]  D. Nicastro,et al.  One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures , 2012, PloS one.

[2]  K. Bui,et al.  Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme , 2012, Journal of Cell Biology.

[3]  D. Nicastro,et al.  The CSC connects three major axonemal complexes involved in dynein regulation , 2012, Molecular biology of the cell.

[4]  D. Nicastro,et al.  Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein , 2012, Proceedings of the National Academy of Sciences.

[5]  N. Hirokawa,et al.  Cilia, KIF3 molecular motor and nodal flow. , 2012, Current opinion in cell biology.

[6]  N. Katsanis,et al.  Cilia in vertebrate development and disease , 2012, Development.

[7]  I. Drummond Cilia functions in development. , 2012, Current opinion in cell biology.

[8]  D. Nicastro,et al.  The structural heterogeneity of radial spokes in cilia and flagella is conserved , 2012, Cytoskeleton.

[9]  Young-Joon Kim,et al.  Genome-Wide Analysis of DNA Methylation and the Gene Expression Change in Lung Cancer , 2012, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[10]  K. Bui,et al.  Cryoelectron tomography of radial spokes in cilia and flagella , 2011, The Journal of cell biology.

[11]  L. Wain,et al.  Genome-wide association studies in lung disease , 2011, Thorax.

[12]  W. Sale,et al.  bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms , 2011, Molecular biology of the cell.

[13]  D. Nicastro,et al.  The CSC is required for complete radial spoke assembly and wild-type ciliary motility , 2011, Molecular biology of the cell.

[14]  W. Sale,et al.  An axonemal PP2A B‐subunit is required for PP2A localization and flagellar motility , 2011, Cytoskeleton.

[15]  D. Nicastro,et al.  Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella* , 2011, The Journal of Biological Chemistry.

[16]  J. Rosenbaum,et al.  Subunit interactions within the Chlamydomonas flagellar spokehead , 2011, Cytoskeleton.

[17]  Lance Lee Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. , 2011, Gene.

[18]  W. Sale,et al.  Distinct roles of 1α and 1β heavy chains of the inner arm dynein I1 of Chlamydomonas flagella , 2011, Molecular biology of the cell.

[19]  Elizabeth F. Smith,et al.  Cilia 2010: The Surprise Organelle of the Decade , 2011, Science Signaling.

[20]  M. Hirono,et al.  Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins , 2010, The Journal of cell biology.

[21]  C. Lindemann,et al.  Flagellar and ciliary beating: the proven and the possible , 2010, Journal of Cell Science.

[22]  T. Mitchison,et al.  Cell biology: How cilia beat , 2010, Nature.

[23]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[24]  Robert Pless,et al.  Efficient spatiotemporal analysis of the flagellar waveform of Chlamydomonas reinhardtii , 2009, Cytoskeleton.

[25]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella , 2009, The Journal of cell biology.

[26]  K. Bui,et al.  Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella , 2009, The Journal of cell biology.

[27]  C. Brokaw,et al.  Thinking about flagellar oscillation. , 2009, Cell motility and the cytoskeleton.

[28]  W. Sale,et al.  IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. , 2009, Molecular biology of the cell.

[29]  W. Sale,et al.  IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding. , 2009, Molecular biology of the cell.

[30]  Sudipto Roy The motile cilium in development and disease: emerging new insights , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[31]  Kenji Kikushima Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins. , 2009, Cell motility and the cytoskeleton.

[32]  K. Bui,et al.  Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella , 2008, The Journal of cell biology.

[33]  S. Hayashi,et al.  Mechanism of flagellar oscillation–bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm , 2008, Journal of Cell Science.

[34]  W. Marshall The cell biological basis of ciliary disease , 2008, The Journal of cell biology.

[35]  R. Kamiya,et al.  Novel 44-Kilodalton Subunit of Axonemal Dynein Conserved from Chlamydomonas to Mammals , 2007, Eukaryotic Cell.

[36]  Triscia W. Hendrickson,et al.  Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. , 2007, Cell motility and the cytoskeleton.

[37]  S. Burgess,et al.  Mechanical properties of inner-arm dynein-f (dynein I1) studied with in vitro motility assays. , 2007, Biophysical journal.

[38]  P. Satir,et al.  Overview of structure and function of mammalian cilia. , 2007, Annual review of physiology.

[39]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[40]  W. Inwood,et al.  Natural History of Transposition in the Green Alga Chlamydomonas reinhardtii: Use of the AMT4 Locus as an Experimental System , 2006, Genetics.

[41]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[42]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[43]  M. Hirono,et al.  Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein , 2005, Journal of Cell Science.

[44]  Chikako Shingyoji,et al.  Effects of Imposed Bending on Microtubule Sliding in Sperm Flagella , 2004, Current Biology.

[45]  Triscia W. Hendrickson,et al.  IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. , 2004, Molecular biology of the cell.

[46]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[47]  C. Brokaw Computer simulation of flagellar movement VIII: coordination of dynein by local curvature control can generate helical bending waves. , 2002, Cell motility and the cytoskeleton.

[48]  Elizabeth F. Smith Regulation of flagellar dynein by the axonemal central apparatus. , 2002, Cell motility and the cytoskeleton.

[49]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[50]  R. Kamiya Analysis of cell vibration for assessing axonemal motility in Chlamydomonas. , 2000, Methods.

[51]  W. Sale,et al.  The 9 + 2 Axoneme Anchors Multiple Inner Arm Dyneins and a Network of Kinases and Phosphatases That Control Motility , 2000, The Journal of cell biology.

[52]  W. Sale,et al.  The Mr 140,000 intermediate chain of Chlamydomonas flagellar inner arm dynein is a WD-repeat protein implicated in dynein arm anchoring. , 1998, Molecular biology of the cell.

[53]  Toshio Yanagida,et al.  Dynein arms are oscillating force generators , 1998, Nature.

[54]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[55]  M. Hirono,et al.  Chlamydomonas Inner-Arm Dynein Mutant, ida5, Has a Mutation in an Actin-encoding Gene , 1997, The Journal of cell biology.

[56]  E. O'Toole,et al.  The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex. , 1997, Molecular biology of the cell.

[57]  S. Dutcher,et al.  Phosphoregulation of an Inner Dynein Arm Complex in Chlamydomonas reinhardtii Is Altered in Phototactic Mutant Strains , 1997, The Journal of cell biology.

[58]  W. Sale,et al.  Regulation of Flagellar Dynein by Phosphorylation of a 138-kD Inner Arm Dynein Intermediate Chain , 1997, The Journal of cell biology.

[59]  G. Piperno,et al.  The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. , 1995, Molecular biology of the cell.

[60]  E. O'Toole,et al.  Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella , 1994, The Journal of cell biology.

[61]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the radial spokes in flagella. , 1992, Science.

[62]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[63]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[64]  R. Kamiya,et al.  Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms , 1986, The Journal of cell biology.

[65]  T. Otter,et al.  Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[66]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[67]  J. Jarvik,et al.  Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii , 1980, The Journal of cell biology.

[68]  G. B. Witman,et al.  CHLAMYDOMONAS FLAGELLA , 1972, The Journal of cell biology.

[69]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[70]  M. Porter Flagellar Motility and the Dynein Regulatory Complex , 2012 .

[71]  S. King Dyneins : structure, biology and disease , 2012 .

[72]  C. Lindemann Experimental evidence for the geometric clutch hypothesis. , 2011, Current topics in developmental biology.

[73]  Miho Sakato Crosslinking methods purification and analysis of crosslinked dynein products. , 2009, Methods in cell biology.

[74]  S. King,et al.  Axonemal Dyneins: Assembly, Structure, and Force Generation , 2009 .

[75]  Pinfen Yang,et al.  The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. , 2004, Cell motility and the cytoskeleton.

[76]  R. Kamiya Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. , 2002, International review of cytology.

[77]  D. Pallas,et al.  Methylation of the protein phosphatase 2A catalytic subunit is essential for association of Balpha regulatory subunit but not SG2NA, striatin, or polyomavirus middle tumor antigen. , 2001, Molecular biology of the cell.

[78]  W. Sale,et al.  Protein phosphatases PP1 and PP2A are located in distinct positions in the Chlamydomonas flagellar axoneme. , 2000, Journal of cell science.

[79]  C. Shingyoji,et al.  Induction of temporary beating in paralyzed flagella of Chlamydomonas mutants by application of external force. , 1997, Cell motility and the cytoskeleton.

[80]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[81]  G. Piperno Regulation of dynein activity within Chlamydomonas flagella. , 1995, Cell motility and the cytoskeleton.

[82]  J. Salisbury,et al.  Immunofluorescence microscopy of cilia and flagella. , 1995, Methods in cell biology.

[83]  B. Taillon,et al.  Release of the cytoskeleton and flagellar apparatus from Chlamydomonas. , 1995, Methods in cell biology.

[84]  S. Dutcher Mating and tetrad analysis in Chlamydomonas reinhardtii. , 1995, Methods in cell biology.

[85]  C. Brokaw Control of flagellar bending: a new agenda based on dynein diversity. , 1994, Cell motility and the cytoskeleton.

[86]  R. Kamiya,et al.  Nanometer scale vibration in mutant axonemes of Chlamydomonas. , 1994, Cell motility and the cytoskeleton.

[87]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[88]  G. Witman Isolation of Chlamydomonas flagella and flagellar axonemes. , 1986, Methods in enzymology.