Unification in linear temporal logic LTL

Abstract We prove that a propositional Linear Temporal Logic with Until and Next (LTL) has unitary unification. Moreover, for every unifiable in LTL formula A there is a most general projective unifier, corresponding to some projective formula B, such that A is derivable from B in LTL. On the other hand, it can be shown that not every open and unifiable in LTL formula is projective. We also present an algorithm for constructing a most general unifier.

[1]  Emil Jerábek,et al.  Complexity of admissible rules , 2007, Arch. Math. Log..

[2]  Emil Jerábek Admissible Rules of Lukasiewicz Logic , 2010, J. Log. Comput..

[3]  Vladimir V. Rybakov,et al.  Problems of Substitution and Admissibility in the Modal System Grz and in Intuitionistic Propositional Calculus , 1990, Ann. Pure Appl. Log..

[4]  Jordi Levy,et al.  Nominal Unification from a Higher-Order Perspective , 2008, RTA.

[5]  Renate A. Schmidt,et al.  A Tableau Method for Checking Rule Admissibility in S4 , 2010, M4M.

[6]  Silvio Ghilardi,et al.  Unification Through Projectivity , 1997, J. Log. Comput..

[7]  Alberto Oliart,et al.  Fast algorithms for uniform semi-unification , 2004, J. Symb. Comput..

[8]  Renate A. Schmidt,et al.  Automated Synthesis of Tableau Calculi , 2009, TABLEAUX.

[9]  Vladimir V. Rybakov,et al.  Linear temporal logic with until and next, logical consecutions , 2008, Ann. Pure Appl. Log..

[10]  Emil Jerábek,et al.  Independent Bases of Admissible Rules , 2008, Log. J. IGPL.

[11]  Stephan Merz,et al.  Temporal Logic and State Systems , 2008, Texts in Theoretical Computer Science. An EATCS Series.

[12]  Rosalie Iemhoff,et al.  Proof theory for admissible rules , 2009, Ann. Pure Appl. Log..

[13]  Alan Robinson,et al.  The Inverse Method , 2001, Handbook of Automated Reasoning.

[14]  Christopher Butler,et al.  Unification , 1937, Journal of the Irish Medical Association.

[15]  Moshe Y. Vardi,et al.  LTL Satisfiability Checking , 2007, SPIN.

[16]  Emil Jerábek,et al.  Admissible Rules of Modal Logics , 2005, J. Log. Comput..

[17]  Renate A. Schmidt,et al.  A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments , 2008, IJCAR.

[18]  Rosalie Iemho On the Admissible Rules of Intuitionistic Propositional Logic , 2008 .

[19]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[20]  Vladimir V. Rybakov,et al.  A criterion for admissibility of rules in the model system S4 and the intuitionistic logic , 1984 .

[21]  Vladimir V. Rybakov,et al.  Rules of inference with parameters for intuitionistic logic , 1992, Journal of Symbolic Logic.

[22]  Rosalie Iemhoff Towards a Proof System for Admissibility , 2003, CSL.

[23]  Stefano Berardi,et al.  Interactive Learning-Based Realizability for Heyting Arithmetic with EM1 , 2010, Log. Methods Comput. Sci..

[24]  Paliath Narendran,et al.  Unification of Concept Terms in Description Logics , 2001, Description Logics.

[25]  Ralf Küsters,et al.  Unification in a Description Logic with Transitive Closure of Roles , 2001, LPAR.

[26]  Silvio Ghilardi,et al.  Unification, finite duality and projectivity in varieties of Heyting algebras , 2004, Ann. Pure Appl. Log..

[27]  Franz Baader,et al.  Unification in the Description Logic EL , 2009, RTA.

[28]  Silvio Ghilardi,et al.  Best Solving Modal Equations , 2000, Ann. Pure Appl. Log..

[29]  Vladimir V. Rybakov,et al.  Logics with the universal modality and admissible consecutions , 2007, J. Appl. Non Class. Logics.

[30]  Vladimir V. Rybakov,et al.  Multi-modal and Temporal Logics with Universal Formula - Reduction of Admissibility to Validity and Unification , 2008, J. Log. Comput..

[31]  Silvio Ghilardi,et al.  Unification in intuitionistic logic , 1999, Journal of Symbolic Logic.

[32]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[33]  Vladimir V. Rybakov,et al.  Linear Temporal Logic LTL: Basis for Admissible Rules , 2011, J. Log. Comput..

[34]  Silvio Ghilardi,et al.  A Resolution/Tableaux Algorithm for Projective Approximations in IPC , 2002, Log. J. IGPL.