Multiscale Symmetric Part Detection and Grouping

Skeletonization algorithms typically decompose an object’s silhouette into a set of symmetric parts, offering a powerful representation for shape categorization. However, having access to an object’s silhouette assumes correct figure-ground segmentation, leading to a disconnect with the mainstream categorization community, which attempts to recognize objects from cluttered images. In this paper, we present a novel approach to recovering and grouping the symmetric parts of an object from a cluttered scene. We begin by using a multiresolution superpixel segmentation to generate medial point hypotheses, and use a learned affinity function to perceptually group nearby medial points likely to belong to the same medial branch. In the next stage, we learn higher granularity affinity functions to group the resulting medial branches likely to belong to the same object. The resulting framework yields a skeletal approximation that is free of many of the instabilities that occur with traditional skeletons. More importantly, it does not require a closed contour, enabling the application of skeleton-based categorization systems to more realistic imagery.

[1]  Antti Ylä-Jääski,et al.  Grouping Symmetrical Structures for Object Segmentation and Description , 1996, Comput. Vis. Image Underst..

[2]  I. Biederman Human image understanding: Recent research and a theory , 1985, Computer Vision Graphics and Image Processing.

[3]  James L. Crowley,et al.  A Representation for Shape Based on Peaks and Ridges in the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Song Wang,et al.  Globally Optimal Grouping for Symmetric Closed Boundaries by Combining Boundary and Region Information , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[6]  Michael Brady,et al.  Generating and Generalizing Models of Visual Objects , 1987, Artif. Intell..

[7]  Ali Shokoufandeh,et al.  Indexing hierarchical structures using graph spectra , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[9]  Philip N. Klein,et al.  Recognition of shapes by editing their shock graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[11]  Greg Mori,et al.  Guiding model search using segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Kaleem Siddiqi,et al.  Matching Hierarchical Structures Using Association Graphs , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[14]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[15]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Sven J. Dickinson,et al.  Multiscale symmetric part detection and grouping , 2009, ICCV.

[17]  Jean Ponce,et al.  On characterizing ribbons and finding skewed symmetries , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[18]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[19]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[20]  Jitendra Malik,et al.  Recovering human body configurations: combining segmentation and recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[21]  Alan L. Yuille,et al.  Segmenting by seeking the symmetry axis , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[22]  Tat-Jen Cham,et al.  Geometric Saliency of Curve Correspondances and Grouping of Symmetric Comntours , 1996, ECCV.

[23]  Arthur C. Sanderson,et al.  Multiple Resolution Representation and Probabilistic Matching of 2-D Gray-Scale Shape , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Sven J. Dickinson,et al.  Bone graphs: Medial shape parsing and abstraction , 2011, Comput. Vis. Image Underst..

[25]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[26]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[27]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[28]  Ali Shokoufandeh,et al.  Retrieving articulated 3-D models using medial surfaces , 2008, Machine Vision and Applications.

[29]  Martial Hebert,et al.  Stacked Hierarchical Labeling , 2010, ECCV.

[30]  Tat-Jen Cham,et al.  Symmetry detection through local skewed symmetries , 1995, Image Vis. Comput..

[31]  Sven J. Dickinson,et al.  Object categorization using bone graphs , 2011, Comput. Vis. Image Underst..

[32]  Lars Bretzner,et al.  Real-Time Scale Selection in Hybrid Multi-scale Representations , 2003, Scale-Space.

[33]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  Alex Pentland,et al.  Perceptual Organization and the Representation of Natural Form , 1986, Artif. Intell..

[36]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[37]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Alex Pentland,et al.  Automatic extraction of deformable part models , 1990, International Journal of Computer Vision.

[39]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[40]  Sven J. Dickinson,et al.  Model-based perceptual grouping and shape abstraction , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[41]  Sven J. Dickinson,et al.  Contour Grouping and Abstraction Using Simple Part Models , 2010, ECCV.

[42]  Sven J. Dickinson,et al.  Learning Hierarchical Shape Models from Examples , 2005, EMMCVPR.

[43]  James L. McClelland,et al.  B-Spline Contour Representation and Symmetry Detection , 1993 .

[44]  M. Fatih Demirci,et al.  The representation and matching of categorical shape , 2006, Comput. Vis. Image Underst..

[45]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  Sven J. Dickinson,et al.  Optimal Contour Closure by Superpixel Grouping , 2010, ECCV.

[47]  Stan Sclaroff,et al.  Deformable Shape Detection and Description via Model-Based Region Grouping , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[49]  Luc Van Gool,et al.  Computational Symmetry in Computer Vision and Computer Graphics , 2010, Found. Trends Comput. Graph. Vis..