An Algorithm for the Solution of the Parametric Quadratic Programming Problem

We present an ”active set” algorithm for the solution of the convex (but not necessarily strictly convex) parametric quadratic programming problem. The optimal solution and associated multipliers are obtained as piece-wise linear functions of the parameter. At the end of each interval, the active set is changed by either adding, deleting, or exchanging a constraint. The method terminates when either the optimal solution has been obtained for all values of the parameter, or, a further increase in the parameter results in either the feasible region being null or the objective function being unbounded from below. The method used to solve the linear equations associated with a particular active set is left unspecified. The parametric algorithm can thus be implemented using the linear equation solving method of any active set quadratic programming algorithm.

[1]  P. Wolfe THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING , 1959 .

[2]  J. Boot,et al.  On Sensitivity Analysis in Convex Quadratic Programming Problems , 1963 .

[3]  K. Ritter,et al.  A method for solving nonlinear maximum-problems depending on parameters , 1967 .

[4]  K. Ritter,et al.  A Parametric Method for Semidefinite Quadratic Programs , 1969 .

[5]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[6]  C. Panne,et al.  The Symmetric Formulation of the Simplex Method for Quadratic Programming , 1969 .

[7]  R. Fletcher A General Quadratic Programming Algorithm , 1971 .

[8]  Richard W. Cottle Monotone solutions of the parametric linear complementarity problem , 1972, Math. Program..

[9]  Katta G. Murty,et al.  Linear and combinatorial programming , 1976 .

[10]  Klaus Ritter,et al.  An effective algorithm for quadratic minimization problems , 1976 .

[11]  Robert G. Bland,et al.  New Finite Pivoting Rules for the Simplex Method , 1977, Math. Oper. Res..

[12]  Ikuyo Kaneko,et al.  Isotone solutions of parametric linear complementarity problems , 1977, Math. Program..

[13]  Ikuyo Kaneko A parametric linear complementarity problem involving derivatives , 1978, Math. Program..

[14]  Philip E. Gill,et al.  Numerically stable methods for quadratic programming , 1978, Math. Program..

[15]  K. Ritter On Parametric Linear and Quadratic Programming Problems. , 1981 .

[16]  Michael J. Best,et al.  Equivalence of some quadratic programming algorithms , 1984, Math. Program..

[17]  Michael J. Best,et al.  A quadratic programming algorithm , 1988, ZOR Methods Model. Oper. Res..

[18]  M. Best,et al.  Sensitivity Analysis for Mean-Variance Portfolio Problems , 1991 .

[19]  Michael J. Best,et al.  AnO(n2) active set method for solving a certain parametric quadratic program , 1992 .

[20]  Michael J. Best,et al.  The analytics of sensitivity analysis for mean-variance portfolio problems , 1992 .

[21]  B. Ding,et al.  Global and Local Quadratic Minimization , 1997, J. Glob. Optim..