Multiobjective global optimization of mechanical systems with cracks

The paper is devoted to the multiobjective shape optimization of cracked structures. The two main goals are: reduction of the negative crack influence of identified cracks and optimal design of structural elements to reduce the risk of crack occurrence and growth. NURBS (Non-Uniform Rational B-Splines) curves are used to model the structure boundaries. Global optimization methods in the form of evolutionary algorithms are employed. As different optimization criteria are considered simultaneously, the efficient multiobjective optimization method are applied. An in-house multiobjective evolutionary algorithm is proposed as an efficient optimization tool. The dual boundary element method is used to solve the boundaryvalue problem.

[1]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[2]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[3]  T. Cruse,et al.  Boundary-integral equation analysis of cracked anisotropic plates , 1975 .

[4]  M. H. Aliabadi,et al.  Boundary Element Methods in Linear Elastic Fracture Mechanics , 2014 .

[5]  Mun-Bo Shim,et al.  A Study on Multiobjective Optimization Technique for Inverse and Crack Identification Problems , 2002 .

[6]  J. Caicedo,et al.  Cracked plate analysis with the dual boundary element method and Williams׳ eigenexpansion , 2015 .

[7]  Johanna Weiss,et al.  Boundary Elements An Introductory Course , 2016 .

[8]  Tadeusz Burczyński,et al.  The identification of cracks using boundary elements and evolutionary algorithms , 2001 .

[9]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[10]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[11]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[12]  Anthony R. Ingraffea,et al.  Two‐dimensional stress intensity factor computations using the boundary element method , 1981 .

[13]  A. Długosz,et al.  Optimization in multiscale thermoelastic problems , 2014 .

[14]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[15]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[16]  B. K. Sridhara,et al.  Fatigue life prediction: A Continuum Damage Mechanics and Fracture Mechanics approach , 2012 .

[17]  A. Długosz,et al.  Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms , 2012 .

[18]  Marco Laumanns,et al.  A Tutorial on Evolutionary Multiobjective Optimization , 2004, Metaheuristics for Multiobjective Optimisation.

[19]  A. Długosz,et al.  Multiobjective and multiscale optimization of composite materials by means of evolutionary computations , 2016 .

[20]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[21]  R. Perera,et al.  Identification of intermediate debonding damage in FRP-plated RC beams based on multi-objective particle swarm optimization without updated baseline model , 2014 .

[22]  R. Baptista,et al.  Optimization of cruciform specimens for biaxial fatigue loading with direct multi search , 2015 .

[23]  W. Beluch Evolutionary shape optimization in fracture problems , 2005 .

[24]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[25]  Antonio Ruiz,et al.  Performance assessment of multicriteria damage identification genetic algorithms , 2009 .