A dilation theoretic approach to approximation by inner functions

Using results from theory of operators on a Hilbert space, we prove approximation results for matrix-valued holomorphic functions on the unit disc and the unit bidisc. The essential tools are the theory of unitary dilation of a contraction and the realization formula for functions in the unit ball of $H^\infty$. We first prove a generalization of a result of Carath\'eodory. This generalization has many applications. A uniform approximation result for matrix-valued holomorphic functions which extend continuously to the unit circle is proved using the Potapov factorization. This generalizes a theorem due to Fisher. Approximation results are proved for matrix-valued functions for whom a naturally associated kernel has finitely many negative squares. This uses the Krein-Langer factorization. Approximation results for $J$-contractive meromorphic functions where $J$ induces an indefinite metric on $\mathbb C^N$ are proved using the Potapov-Ginzburg Theorem. Moreover, approximation results for holomorphic functions on the unit disc with values in certain other domains of interest are also proved.

[1]  Zinaida A. Lykova,et al.  Rational tetra-inner functions and the special variety of the tetrablock , 2021, 2101.02739.

[2]  Zinaida A. Lykova,et al.  Interpolation by holomorphic maps from the disc to the tetrablock , 2021, Journal of Mathematical Analysis and Applications.

[3]  Greg Knese Kummert's approach to realization on the bidisk , 2019, Indiana University Mathematics Journal.

[4]  Alberto A. Condori Maximum Principles for Matrix-Valued Analytic Functions , 2019, Am. Math. Mon..

[5]  J. Mashreghi,et al.  Approximation in the Closed Unit Ball , 2017, 1701.05538.

[6]  J. Agler,et al.  Finite Blaschke products and the construction of rational Γ-inner functions ☆ , 2015, 1505.02415.

[7]  J. Agler,et al.  Algebraic and geometric aspects of rational $\Gamma$-inner functions , 2015, 1502.04216.

[8]  Jim Agler,et al.  A Case of μ-Synthesis as a Quadratic Semidefinite Program , 2013, SIAM J. Control. Optim..

[9]  Eliahu Levy,et al.  Dilation theory in finite dimensions: the possible, the impossible and the unknown , 2010, 1012.4514.

[10]  Łukasz Kosiński,et al.  The Lempert Theorem and the Tetrablock , 2010, 1006.4883.

[11]  John E. McCarthy,et al.  A Carathéodory theorem for the bidisk via Hilbert space methods , 2010, 1002.3727.

[12]  N. Young,et al.  A Schwarz lemma for a domain related to μ-synthesis , 2007, 0708.0637.

[13]  L. Rodman,et al.  Krein-Langer Factorizations via Pole Triples , 2003 .

[14]  D. Alpay The Schur algorithm, reproducing kernel spaces and system theory , 2002 .

[15]  M. Putinar,et al.  Spherical contractions and interpolation problems on the unit ball , 2002 .

[16]  J. Agler,et al.  A Commutant Lifting Theorem for a Domain in C2and Spectral Interpolation , 1999 .

[17]  Daniel Alpay,et al.  Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces , 1997 .

[18]  J. Agler Operator theory and the Carathéodory metric , 1990 .

[19]  I. Gohberg,et al.  Topics in Operator Theory: Ernst d Hellinger Memorial Volume , 1990 .

[20]  N. Young J -CONTRACTIVE MATRIX FUNCTIONS, REPRODUCING KERNEL HILBERT SPACES AND INTERPOLATION (CBMS Regional Conference Series in Mathematics 71) , 1990 .

[21]  H. Dym J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and Interpolation , 1989 .

[22]  Y. Kamp,et al.  Minimal realizations of pseudo-positive and pseudo-bounded rational matrices , 1985 .

[23]  Olavi Nevanlinna,et al.  Matrix valued versions of a result of von Neumann with an application to time discretization , 1985 .

[24]  P. Dewilde,et al.  Lossless inverse scattering, digital filters, and estimation theory , 1984, IEEE Trans. Inf. Theory.

[25]  S. Fisher The convex hull of the finite Blaschke products , 1968 .

[26]  W. C. Brenke,et al.  Theory of Functions of a Complex Variable , 1914 .

[27]  W. Burnside Theory of Functions of a Complex Variable , 1893, Nature.

[28]  Anna Gerber,et al.  Function Theory In Polydiscs , 2016 .

[29]  C. Costara On the spectral Nevanlinna-Pick problem , 2005 .

[30]  D. Alpay,et al.  Algorithme de Schur, espaces à noyau reproduisant et théorie des systèmes , 1998 .

[31]  M. A. Kaashoek,et al.  The State Space Method for Solving Singular Integral Equations , 1991 .

[32]  L. Rodman,et al.  Interpolation of Rational Matrix Functions , 1990 .

[33]  D. Alpay,et al.  On Applications of Reproducing Kernel Spaces to the Schur Algorithm and Rational J Unitary Factorization , 1986 .

[34]  M. A. Kaashoek,et al.  Minimal Factorization of Matrix and Operator Functions , 1980 .

[35]  Béla Szőkefalvi-Nagy,et al.  Hilbert space operators and operator algebras , 1972 .

[36]  M. Brodskiĭ Triangular and Jordan representations of linear operators , 1971 .