Algebraic approach to robust controller design: a geometric interpretation
暂无分享,去创建一个
[1] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[2] F. J. Kraus,et al. Robust assignment of polynomial matrix polytopes , 1997, 1997 European Control Conference (ECC).
[3] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[4] G. Papavassilopoulos,et al. Biaffine matrix inequality properties and computational methods , 1994, Proceedings of 1994 American Control Conference - ACC '94.
[5] Brian D. O. Anderson,et al. Some remarks on simplified stability criteria for continuous linear systems , 1972 .
[6] Vladimír Kučera,et al. Diophantine equations in control - A survey , 1993, Autom..
[7] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[8] Biswa Nath Datta,et al. On Bezoutians, Van der Monde matrices, and the Lienard-Chipart stability criterion , 1989 .
[9] B. Ross Barmish,et al. New Tools for Robustness of Linear Systems , 1993 .
[10] Sophie Tarbouriech,et al. LMI approximations for the radius of the intersection of ellipsoids , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[11] K. Goh,et al. Robust synthesis via bilinear matrix inequalities , 1996 .
[12] C. C. Gonzaga,et al. On Constraint Dropping Schemes and Optimality Functions for a Class of Outer Approximations Algorithms , 1979 .