Model Studies for the Coenzyme‐B12‐Catalyzed Methylmalonyl→Succinyl Rearrangement. The Importance of Hydrophobic Peripheral Associations

The interaction between a vitamin B12 derivative containing a peripheral C18 alkyl chain (see 1a) and a (methyl)thiomalonate substrate bearing alkyl chains of various length at the thioester group (see 5) was investigated. A catalytic cycle was established for the methylmalonylsuccinyl rearrangement by using electrochemistry and photolysis (see Scheme 3). Increased yields of the succinate relative to the reduction product were obtained (2:3 ratio), when the reaction was run in MeOH/H2O, and when both the substrate and the catalyst had an octadecyl substituent capable of hydrophobic interactions.

[1]  G. Örlygsson,et al.  Evidence for a Mechanism Involving Transient Fragmentation in Carbon Skeleton Rearrangements Dependent on Coenzyme B12 , 1995 .

[2]  Wolfgang Buckel,et al.  Hinweise auf einen Fragmentierungsmechanismus bei Coenzym-B12-abhängigen Umlagerungen des Kohlenstoffgerüsts†‡ , 1995 .

[3]  F. Menger,et al.  Long Organic Fibers Obtained by Noncovalent Synthesis , 1994 .

[4]  J. Lally,et al.  Investigation of a coenzyme B12 model reaction by 13C NMR spectroscopy , 1994 .

[5]  P. Dowd,et al.  First hydrogen abstraction-rearrangement model for the coenzyme B12-dependent methylmalonyl-CoA to succinyl-CoA carbon skeleton rearrangement reaction , 1992 .

[6]  Y. Hisaeda,et al.  Hydrophobic Vitamin B12. XI. Preparation, Characterization, and Enantioselective Alkylation of Hydrophobic Vitamin B12 Bearing a Binaphthyl Moiety , 1992 .

[7]  L. Walder,et al.  A reduction catalyst powered by its own 10-electron battery : synthesis and properties of a pentaviologen-linked corrinatocobalt complex , 1992 .

[8]  J. Rétey,et al.  Nachweis von radikalischen Zwischenstufen in der Coenzym‐B12‐abhängigen Methylmalonyl‐CoA‐Mutase‐Reaktion durch ESR‐Spektroskopie , 1992 .

[9]  J. Rétey,et al.  Radical Intermediates in the Coenzyme B12 Dependent Methylmalonyl‐CoA Mutase Reaction Shown by ESR Spectroscopy , 1992 .

[10]  L. Walder,et al.  Reduktive Co‐Alkylierung von Heptamethyl‐cobyrinat mit dem Methylthiomalonat (S)‐Methyl‐3‐bromo‐2‐[(ethylthio) carbonyl]‐2‐methylpropanoat , 1990 .

[11]  J. Rétey Reaktionsselektivität von Enzymen durch negative Katalyse oder wie gehen Enzyme mit hochreaktiven Intermediaten um , 1990 .

[12]  J. Rétey Enzymic Reaction Selectivity by Negative Catalysis or How Do Enzymes Deal with Highly Reactive Intermediates , 1990 .

[13]  Y. Hisaeda,et al.  Hydrophobic vitamin B12: 8. Carbon-skeleton rearrangement reactions catalyzed by hydrophobic vitamin B12 in octopus azaparacyclophane , 1990 .

[14]  J. Halpern,et al.  1,2-Migrations in free radicals related to coenzyme B12-dependent rearrangements , 1988 .

[15]  A. Beckwith,et al.  Rearrangement of suitably constituted aryl, alkyl, or vinyl radicals by acyl or cyano group migration , 1988 .

[16]  J. Rétey,et al.  The error in the cryptic stereospecificity of methylmalonyl-CoA mutase. The use of carba-(dethia)-coenzyme A substrate analogues gives new insight into the enzyme mechanism. , 1988, European journal of biochemistry.

[17]  B. K. Trivedi,et al.  On the mechanism of action of vitamin B12. Model studies directed toward the hydrogen abstraction reaction , 1985 .

[18]  J. M. Pratt The B12-dependent isomerase enzymes; how the protein controls the active site , 1985 .

[19]  B. Kräutler,et al.  A Lipophilic Derivative of Vitamin B12 as Selective Carrier for Anions , 1984 .

[20]  D. Schiraldi,et al.  Towards the unification of coenzyme B12-dependent diol dehydratase stereochemical and model studies: The bound radical mechanism , 1984 .

[21]  Y. Hisaeda,et al.  Hydrophobic Vitamin B12. II. Coordination Geometry and Redox Behavior of Heptamethyl Cobyrinate in Nonaqueous Media , 1984 .

[22]  P. Dowd,et al.  A nonenzymic model for the coenzyme B12-dependent isomerization of methylmalonyl-SCoA to suiccinyl-SCoA , 1984 .

[23]  U. Aeberhard,et al.  Structure and Chemistry of Malonylmethyl‐ and Succinyl‐Radicals. The search for homolytic 1,2‐rearrangements , 1983 .

[24]  Y. Hisaeda,et al.  Hydrophobic vitamin B12. I. Preparation and axial ligation behavior of hydrophobic vitamin B12r. , 1983 .

[25]  J. Grate,et al.  Studies on vitamin B12 and related compounds. 53. Synthesis and reactions of organocobalamins relevant to the mechanism of the methylmalonyl-CoA-succinyl-CoA mutase enzyme , 1982 .

[26]  A. Scott,et al.  Vitamin B12: Catalyst for a nonenzymic carbon-skeleton model rearrangement , 1980 .

[27]  J. Rétey,et al.  Cholestano‐cobaloxime und Cholestano‐rhodoxime. Synthese, Charakterisierung und Umlagerung von Modellverbindungen für die Aktivstelle von Methylmalonyl‐CoA‐Mutase , 1980 .

[28]  J. Rétey,et al.  Ein synthetisches Modell für die Aktivstelle der Coenzym-B12-abhängigen Methylmalonyl-CoA-Mutase , 1978 .

[29]  A. Scott,et al.  The mechansim of action of coenzyme B12. The role thioester in a nonenzyme model reaction for coenzyme B12 Dependent isomerization of methylmalony coenzyme A to succinyl coenzyme A. , 1977, Journal of the American Chemical Society.

[30]  W. Jencks Catalysis in chemistry and enzymology , 1969 .

[31]  T. Wagner,et al.  A model system for the study of equilibrium hydrophobic bond formation , 1968 .

[32]  R. Abeles,et al.  The nature of the hydrogen transfer in the dimethylbenzimidazolylcobamide coenzyme-catalyzed conversion of 1,2-propanediol to propionaldehyde. , 1966, The Journal of biological chemistry.

[33]  R. Kellermeyer,et al.  Methylmalonyl isomerase: a study of the mechanism of isomerization. , 1962, Biochemistry.