Microscopy and Image Analysis

This unit provides an overview of light microscopy, including objectives, light sources, filters, film, and color photography for fluorescence microscopy and fluorescence in situ hybridization (FISH). We believe there are excellent opportunities for cytogeneticists, pathologists, and other biomedical readers, to take advantage of specimen optical clearing techniques and expansion microscopy—we briefly point to these new opportunities. © 2017 by John Wiley & Sons, Inc.

[1]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  K. Kidd,et al.  Localization of the gene for MEN 2A. , 1992, Henry Ford Hospital medical journal.

[3]  J Vrolijk,et al.  Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy. , 1992, Cytometry.

[4]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[5]  H. Obrig,et al.  Towards Whole-Body Fluorescence Imaging in Humans , 2013, PloS one.

[6]  Thomas Ried,et al.  Spectral Imaging of Multi-Color Chromogenic Dyes in Pathological Specimens , 2001, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology.

[7]  Matthias Rieckher,et al.  Light Sheet Microscopy to Measure Protein Dynamics , 2017, Journal of cellular physiology.

[8]  H. Greenspan,et al.  Classification of lymphoproliferative disorders by spectral imaging of the nucleus. , 2002, Histology and histopathology.

[9]  D. Ward,et al.  Karyotyping human chromosomes by combinatorial multi-fluor FISH , 1996, Nature Genetics.

[10]  Robert D. Goldman,et al.  Light microscopy and cell structure , 1998 .

[11]  Zeno Lavagnino,et al.  Quantitative Assessment of Fluorescent Proteins , 2016, Nature Methods.

[12]  J. Ploem,et al.  2 – Light and Scanning Electron Microscopy in a Combined Instrument , 1987 .

[13]  S. Bachilo,et al.  Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. , 2004, Journal of the American Chemical Society.

[14]  T. Caspersson,et al.  Chemical differentiation along metaphase chromosomes. , 1968, Experimental cell research.

[15]  Roger Y. Tsien,et al.  Crystal Structure of the Aequorea victoria Green Fluorescent Protein , 1996, Science.

[16]  D. Ward,et al.  The human cytochrome b5 gene and two of its pseudogenes are located on chromosomes 18q23, 14q31-32.1 and 20p11.2, respectively , 1993, Human Genetics.

[17]  D. Ward,et al.  Immunological method for mapping genes on Drosophila polytene chromosomes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Amala Chaudhuri,et al.  The chromosome number in man , 1963, Indian journal of pediatrics.

[19]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[20]  P. Lichter,et al.  In Situ Hybridization to Metaphase Chromosomes and Interphase Nuclei , 1997, Current protocols in human genetics.

[21]  M. D. Egger,et al.  New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells , 1967, Science.

[22]  L. Manuelidis,et al.  Individual interphase chromosome domains revealed by in situ hybridization , 2004, Human Genetics.

[23]  B. Trask,et al.  Fluorescence in situ hybridization mapping of human chromosome 19: cytogenetic band location of 540 cosmids and 70 genes or DNA markers. , 1993, Genomics.

[24]  K. Dan,et al.  Birefringenoe of the dividing cell , 1951 .

[25]  B. Matsumoto Cell biological applications of confocal microscopy , 1993 .

[26]  G. Drummen,et al.  Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM , 2012, Molecules.

[27]  A. Leeuwenhoek An abstract of a letter from Mr. Anthony Leewenhoeck writ to Sir C. W. , 2022, Philosophical Transactions of the Royal Society of London.

[28]  Patrick S Daugherty,et al.  Evolutionary optimization of fluorescent proteins for intracellular FRET , 2005, Nature Biotechnology.

[29]  I. Barshack,et al.  Potential use of spectral image analysis for the quantitative evaluation of estrogen receptors in breast cancer. , 2000, Histology and histopathology.

[30]  Lisa Jardine,et al.  The Curious Life of Robert Hooke: The Man Who Measured London , 2003 .

[31]  Thomas Ried,et al.  Hidden chromosome abnormalities in haematological malignancies detected by multicolour spectral karyotyping , 1997, Nature Genetics.

[32]  Isabelle Richard,et al.  Imaging calpain protease activity by multiphoton FRET in living mice. , 2005, Journal of molecular biology.

[33]  Isaac Sir Newton Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .

[34]  B. Kachar,et al.  Asymmetric illumination contrast: a method of image formation for video light microscopy. , 1985, Science.

[35]  R. Newman,et al.  Fluorescent Protein-Based Biosensors , 2014, Methods in Molecular Biology.

[36]  Ivona Brasnjevic,et al.  Imaging in Neuroscience and Development: A Laboratory Manual, Yuste Rafael, Konnerth Arthur (Eds.). Cold Spring Harbor Laboratory Press (2005), (Price: US$ 159.00, ISBN 0-87969-689-3) , 2006 .

[37]  Stavros G Demos,et al.  Evaluation of the contribution of the renal capsule and cortex to kidney autofluorescence intensity under ultraviolet excitation. , 2008, Journal of biomedical optics.

[38]  A. Jauch,et al.  Characterization of two marker chromosomes in a patient with acute nonlymphocytic leukemia by two-color fluorescence in situ hybridization. , 1993, Cancer genetics and cytogenetics.

[39]  O. Sejersted Nobel Prize for Chemistry , 1937, Nature.

[40]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[41]  Ewert Bengtsson,et al.  A Feature Set for Cytometry on Digitized Microscopic Images , 2003, Analytical cellular pathology : the journal of the European Society for Analytical Cellular Pathology.

[42]  R. Weisman,et al.  Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. , 2012, ACS nano.

[43]  Stéphane Marcet,et al.  Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging , 2015, Scientific Reports.

[44]  N. Plesnila,et al.  Shrinkage-mediated imaging of entire organs and organisms using uDISCO , 2016, Nature Methods.

[45]  G Hermanson,et al.  High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. , 1990, Science.

[46]  A. Schierloh,et al.  Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain , 2007, Nature Methods.

[47]  Anne E Carpenter,et al.  Systematic genome-wide screens of gene function , 2004, Nature Reviews Genetics.

[48]  Dan Ward Faster, Better, Cheaper Revisited: Program Management Lessons from NASA , 2010 .

[49]  Jonathan S. Lindsey,et al.  Accessing the near-infrared spectral region with stable, synthetic, wavelength-tunable bacteriochlorins , 2008 .

[50]  J. Lawrence,et al.  Probing functional organization within the nucleus: is genome structure integrated with RNA metabolism? , 1993, Cold Spring Harbor symposia on quantitative biology.

[51]  P. Meltzer,et al.  Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas. , 1999, The American journal of pathology.

[52]  Fengtang Yang,et al.  Multicolor Fluorescence In Situ Hybridization (FISH) Approaches for Simultaneous Analysis of the Entire Human Genome , 2018, Current protocols in human genetics.

[53]  Joshua C Vaughan,et al.  Expansion microscopy with conventional antibodies and fluorescent proteins , 2016, Nature Methods.

[54]  Expansion microscopy passes its first test , 2016, Nature Methods.

[55]  M E Dickinson,et al.  Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. , 2001, BioTechniques.

[56]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[57]  D Sudar,et al.  Comparative Genomic Hybridization , 1995, Current protocols in human genetics.

[58]  E. Schröck,et al.  Previously hidden chromosome aberrations in T(12;15)-positive BALB/c plasmacytomas uncovered by multicolor spectral karyotyping. , 1997, Cancer research.

[59]  S. Garfield Mauve: How One Man Invented a Colour That Changed the World , 2000 .

[60]  A. Campbell,et al.  Measurement of proteases using chemiluminescence-resonance-energy-transfer chimaeras between green fluorescent protein and aequorin. , 2001, The Biochemical journal.

[61]  Alexander M. Jones,et al.  Quantitative imaging with fluorescent biosensors. , 2012, Annual review of plant biology.

[62]  H. Harris The Cells of the Body: A History of Somatic Cell Genetics , 1995 .

[63]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[64]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[65]  D. Ward,et al.  Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[66]  W. Waldeyer,et al.  Ueber Karyokinese und ihre Beziehungen zu den Befruchtungsvorgängen , 1888 .

[67]  Whole-mount imaging of the mouse hindlimb vasculature using the lipophilic carbocyanine dye DiI. , 2012, BioTechniques.

[68]  D C Ward,et al.  Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[69]  S. Lukyanov,et al.  Fluorescent proteins from nonbioluminescent Anthozoa species , 1999, Nature Biotechnology.

[70]  Jacob J. Hughey,et al.  High-Sensitivity Measurements of Multiple Kinase Activities in Live Single Cells , 2014, Cell.

[71]  Brandon L. Scott,et al.  Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions , 2016, PloS one.

[72]  Yongxin Zhao,et al.  An Expanded Palette of Genetically Encoded Ca2+ Indicators , 2011, Science.

[73]  J. Lawrence,et al.  Higher level organization of individual gene transcription and RNA splicing. , 1993, Science.

[74]  Kevin C. Chen,et al.  In vivo activation of the human CYP3A4 promoter in mouse liver and regulation by pregnane X receptors. , 2003, Biochemical pharmacology.

[75]  Hans-Ulrich Dodt,et al.  Ultramicroscopy: development and outlook , 2015, Neurophotonics.

[76]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[77]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[78]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[79]  C. Johnson,et al.  A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[80]  S. Bark,et al.  Formaldehyde scavengers function as novel antigen retrieval agents , 2015, Scientific Reports.

[81]  R. Ornberg,et al.  Analysis of Stained Objects in Histological Sections by Spectral Imaging and Differential Absorption , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[82]  J. Mcneil,et al.  A simple, rapid technique for precise mapping of multiple sequences in two colors using a single optical filter set. , 1991, Genetic analysis, techniques and applications.

[83]  J. Ploem,et al.  The use of a vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incidental light. , 1967, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik.

[84]  D. Ledbetter,et al.  Multicolor Spectral Karyotyping of Human Chromosomes , 1996, Science.

[85]  D. Axelrod Total internal reflection fluorescence microscopy in cell biology. , 2003, Methods in enzymology.

[86]  Brian McKenna,et al.  Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel , 2011, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[87]  T. Cremer,et al.  Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories , 2004, Human Genetics.

[88]  J. Nabekura,et al.  Dual observation of the ATP-evoked small GTPase activation and Ca2+ transient in astrocytes using a dark red fluorescent protein , 2016, Scientific Reports.

[89]  S. Prost,et al.  Working with Commercially Available Quantum Dots for Immunofluorescence on Tissue Sections , 2016, PloS one.

[90]  Farooq Azam,et al.  Thin laser light sheet microscope for microbial oceanography. , 2002, Optics express.

[91]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[92]  J. Mullins,et al.  Photonic detection of bacterial pathogens in living hosts , 1995, Molecular microbiology.

[93]  M. Bittner,et al.  Differentially painting human chromosome arms with combined binary ratio-labeling fluorescence in situ hybridization. , 2000, Genome research.

[94]  S. Bohlander,et al.  Characterization of marker chromosomes by microdissection and fluorescence in situ hybridization , 1994, Prenatal diagnosis.

[95]  Hans-Ulrich Dodt,et al.  Infrared videomicroscopy: a new look at neuronal structure and function , 1994, Trends in Neurosciences.

[96]  Robert H. Singer,et al.  Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization , 1989, Cell.

[97]  David L. Becker,et al.  Confocal Microscopy: Methods and Protocols. , 1999 .

[98]  Robert H Newman,et al.  Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. , 2011, Chemical reviews.

[99]  F S Fay,et al.  A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. , 1993, Science.

[100]  M. Bittner,et al.  Chromosome arm‐specific multicolor FISH , 2001, Genes, chromosomes & cancer.

[101]  H. J. Tanke,et al.  Biomedical Light Microscopy , 1991, Springer Netherlands.

[102]  D. M. Shotton Electronic light microscopy : the principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy , 1993 .

[103]  A. Jauch,et al.  Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridization. , 1990, Genomics.

[104]  Kiryl D Piatkevich,et al.  A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites , 2016, Scientific Reports.

[105]  Edward S Boyden,et al.  Nanoscale Imaging of RNA with Expansion Microscopy , 2016, Nature Methods.

[106]  T. Wohland,et al.  The F-techniques: advances in receptor protein studies , 2008, Trends in Endocrinology & Metabolism.

[107]  Gail McConnell,et al.  A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout , 2016, eLife.

[108]  A. Miyawaki,et al.  Multicolor imaging of Ca(2+) and protein kinase C signals using novel epifluorescence microscopy. , 2002, Biophysical journal.

[109]  J. Marrack Nature of Antibodies , 1934, Nature.

[110]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[111]  E. Salmon,et al.  Proper Alignment and Adjustment of the Light Microscope , 2002, Current protocols in microbiology.

[112]  D H Burns,et al.  Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens , 1993, Journal of microscopy.

[113]  R. Zucker,et al.  Confocal laser scanning microscopy of whole mouse ovaries: Excellent morphology, apoptosis detection, and spectroscopy , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[114]  S. Goodison,et al.  Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[115]  E. Nice,et al.  A simple method allowing DIC imaging in conjunction with confocal microscopy , 2005, Journal of microscopy.

[116]  D L Farkas,et al.  Applications of spectral imaging: detection and analysis of human melanoma and its precursors. , 2001, Pigment cell research.

[117]  H. Scherthan,et al.  Zoo-fluorescence in situ hybridization analysis of human and Indian muntjac karyotypes (Muntiacus muntjak vaginalis) reveals satellite DNA clusters at the margins of conserved syntenic segments , 1997, Chromosome Research.

[118]  Shuo Diao,et al.  Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. , 2013, Angewandte Chemie.

[119]  Brian P. Mehl,et al.  Bright photoactivatable fluorophores for single-molecule imaging , 2016, Nature Methods.

[120]  T. Hughes,et al.  New DAG and cAMP Sensors Optimized for Live-Cell Assays in Automated Laboratories , 2015, Journal of biomolecular screening.

[121]  Steven Ripp,et al.  The Expanding Toolbox of In Vivo Bioluminescent Imaging , 2016, Front. Oncol..

[122]  N. Dracopoli,et al.  Current protocols in human genetics , 1994 .

[123]  Kirsten L. Frieda,et al.  Synthetic recording and in situ readout of lineage information in single cells , 2016, Nature.

[124]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[125]  A. Omelchenko,et al.  Inhibition of the Drosophila Na+/Ca2+ Exchanger, CALX1.1, by KB‐R7943 , 2002, Annals of the New York Academy of Sciences.

[126]  A. H. Coons,et al.  The beginnings of immunofluorescence. , 1961, Journal of immunology.

[127]  H. Nishimura,et al.  Seven-color Fluorescence Imaging of Tissue Samples Based on Fourier Spectroscopy and Singular Value Decomposition , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[128]  J. Lindsey,et al.  Synthetic Chlorins, Possible Surrogates for Chlorophylls, Prepared by Derivatization of Porphyrins. , 2017, Chemical reviews.

[129]  M. Oheim,et al.  REVIEW Imaging Transmitter Release. II. A Practical Guide to Evanescent-wave Imaging , 2001, Lasers in Medical Science.

[130]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[131]  G. Holzwarth,et al.  Polarization-modulated differential-interference contrast microscopy with a variable retarder. , 2000, Applied optics.

[132]  Richard P. Haugland,et al.  Handbook of fluorescent probes and research chemicals , 1996 .

[133]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[134]  John C Reed,et al.  Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools , 2002, Journal of cellular biochemistry. Supplement.

[135]  D. Ward,et al.  Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. , 1993, Genomics.

[136]  B. Horton Microscopy and image analysis , 1997, Nature.

[137]  R. Jones,et al.  Immunological Properties of an Antibody Containing a Fluorescent Group.∗ , 1941 .

[138]  W B Amos,et al.  How the Confocal Laser Scanning Microscope entered Biological Research , 2003, Biology of the cell.

[139]  F. Zernike How I discovered phase contrast. , 1955, Science.

[140]  M. García-Fiñana,et al.  Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease , 2016, European journal of pharmacology.

[141]  Daniel A Heller,et al.  Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. , 2016, Carbon.

[142]  G. B. David,et al.  The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. , 1969, Zeitschrift fur wissenschaftliche Mikroskopie und mikroskopische Technik.

[143]  Ying Song,et al.  Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI , 2008, Nature Protocols.

[144]  R. Tsien,et al.  Imaging Tri-Fusion Multimodality Reporter Gene Expression in Living Subjects , 2004, Cancer Research.

[145]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[146]  Jérôme Lejeune,et al.  Etude des chromosomes somatiques de neuf enfants mongoliens. , 1959 .

[147]  C. Milstein,et al.  With the benefit of hindsight. , 2000, Immunology today.

[148]  Thomas Ried,et al.  Multicolour spectral karyotyping of mouse chromosomes , 1996, Nature Genetics.

[149]  R. Zucker Whole insect and mammalian embryo imaging with confocal microscopy: Morphology and apoptosis , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[150]  J. Swift,et al.  Travels Into Several Remote Nations of the World by Lemuel Gulliver: First a Surgeon, and Then a Captain of Several Ships , 2011 .

[151]  D. Ward,et al.  Rapid analysis of mouse-hamster hybrid cell lines by in situ hybridization. , 1990, Genomics.

[152]  Francis Collins,et al.  Atm-Deficient Mice: A Paradigm of Ataxia Telangiectasia , 1996, Cell.

[153]  Thomas D. Nielsen,et al.  Hyperspectral imaging: a novel approach for microscopic analysis. , 2001, Cytometry.

[154]  Shahram Hejazi,et al.  Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores and Multifunctional Nano Carriers. , 2012, Chemistry of materials : a publication of the American Chemical Society.

[155]  A. Poole,et al.  Fluorescent and luminescent probes for biological activity: A practical guide to technology for quantitative real-time analysis , 1993 .

[156]  Woong Sun,et al.  See-Through Technology for Biological Tissue: 3-Dimensional Visualization of Macromolecules , 2016, International neurourology journal.

[157]  Gary G. Borisy,et al.  Multiplexed Spectral Imaging of 120 Different Fluorescent Labels , 2016, PloS one.

[158]  R. Riddell History of Staining , 1984 .

[159]  D. Ward,et al.  Is non-isotopic in situ hybridization finally coming of age? , 1990, Nature.

[160]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[161]  T. Hsu MAMMALIAN CHROMOSOMES IN VITRO I. The Karyotype of Man , 1952 .

[162]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[163]  George Holzwarth,et al.  Improving DIC microscopy with polarization modulation , 1997 .

[164]  Edward S. Boyden,et al.  Expansion microscopy , 2015, Science.

[165]  N. Thompson,et al.  Total internal reflection fluorescence. , 1984, Annual review of biophysics and bioengineering.

[166]  Ali Khademhosseini,et al.  Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications , 2016, Scientific Reports.

[167]  D. Ehrlich,et al.  Intracellular protein and nucleic acid measured in eight cell types using deep‐ultraviolet mass mapping , 2013, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[168]  Tonny Lagerweij,et al.  A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. , 2016, Progress in histochemistry and cytochemistry.

[169]  H. Tanke,et al.  Comprehensive analysis of human subtelomeres with combined binary ratio labelling fluorescence in situ hybridisation , 2003, European Journal of Human Genetics.

[170]  David L Rimm,et al.  Diagnostic classification of urothelial cells in urine cytology specimens using exclusively spectral information , 2004, Cancer.

[171]  Laura A. Sordillo,et al.  Transmission in near‐infrared optical windows for deep brain imaging , 2016, Journal of biophotonics.

[172]  Hazen P Babcock,et al.  High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization , 2016, Proceedings of the National Academy of Sciences.

[173]  C. Andressen,et al.  Cardiac specific expression of the green fluorescent protein during early murine embryonic development , 1998, FEBS letters.

[174]  Edward S Boyden,et al.  Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies , 2016, Nature Biotechnology.

[175]  D. Pinkel,et al.  Comparative Genomic Hybridization for Molecular Cytogenetic Analysis of Solid Tumors , 2022 .

[176]  D. Housman,et al.  Generation and characterization of irradiation hybrids of human chromosome 4 , 1991, Somatic cell and molecular genetics.

[177]  J. Jaiswal,et al.  Total Internal Reflection Fluorescence Microscopy for High‐Resolution Imaging of Cell‐Surface Events , 2003, Current protocols in cell biology.

[178]  K. Lukyanov,et al.  Diversity and evolution of the green fluorescent protein family , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[179]  O. Kallioniemi,et al.  Genome screening by comparative genomic hybridization. , 1997, Trends in genetics : TIG.

[180]  Irving L. Weissman,et al.  "Fluorescent timer": protein that changes color with time. , 2000, Science.

[181]  R. Bast,et al.  Linking genomic reorganization to tumor initiation via the giant cell cycle , 2016, Oncogenesis.

[182]  H. Willard,et al.  Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes. , 1988, Cancer research.

[183]  Marten Postma,et al.  mScarlet: a bright monomeric red fluorescent protein for cellular imaging , 2016, Nature Methods.

[184]  S. Ramaswamy,et al.  Blue protein with red fluorescence , 2016, Proceedings of the National Academy of Sciences.

[185]  J. J. Macklin,et al.  A general method to improve fluorophores for live-cell and single-molecule microscopy , 2014, Nature Methods.

[186]  Michael W. Davidson,et al.  Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting , 2016, Scientific Reports.

[187]  R. Tsien Building and breeding molecules to spy on cells and tumors , 2005, FEBS letters.

[188]  H. Tanke,et al.  Simultaneous molecular karyotyping and mapping of viral DNA integration sites by 25‐color COBRA‐FISH , 2000, Genes, chromosomes & cancer.

[189]  B. Trask,et al.  Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus , 1995, The Journal of cell biology.

[190]  H. Scherthan,et al.  Zoo-FISH delineates conserved chromosomal segments in horse and man , 1996, Chromosome Research.

[191]  George McNamara,et al.  Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. , 2003, Blood.

[192]  J A Dent,et al.  A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. , 1989, Development.

[193]  Takeharu Nagai,et al.  Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging , 2015, Proceedings of the National Academy of Sciences.

[194]  A. Chapman The microscope in the Dutch republic , 1997 .

[195]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[196]  J. Kononen,et al.  Tissue microarrays for high-throughput molecular profiling of tumor specimens , 1998, Nature Medicine.

[197]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[198]  Yuichiro Hori,et al.  [Crystal structure of the Aequorea victoria green fluorescent protein]. , 2007, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[199]  Stefan W Hell,et al.  Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review , 2015, Methods and applications in fluorescence.

[200]  C. Woldringh,et al.  3 – Confocal Microscopy in Comparison with Electron and Conventional Light Microscopy , 1987 .

[201]  Ray Keller,et al.  How we are shaped: the biomechanics of gastrulation. , 2003, Differentiation; research in biological diversity.

[202]  S. Schuffenhauer,et al.  An optimized probe set for the detection of small interchromosomal aberrations by use of 24-color FISH. , 2000, American journal of human genetics.

[203]  E. Singer A MICROSCOPE FOR OBSERVATION OF FLUORESCENCE IN LIVING TISSUES. , 1932, Science.

[204]  D. Ward,et al.  High-resolution mapping of satellite DNA using biotin-labeled DNA probes , 1982, The Journal of cell biology.

[205]  D. Durnam,et al.  Detection of species specific chromosomes in somatic cell hybrids , 1985, Somatic cell and molecular genetics.

[206]  D. Axelrod Evanescent excitation and emission in fluorescence microscopy. , 2013, Biophysical journal.

[207]  N. Carter,et al.  Fifty probands with extra structurally abnormal chromosomes characterized by fluorescence in situ hybridization. , 1995, American journal of medical genetics.

[208]  J. Spencer,et al.  Comparative gene mapping in the domestic cat (Felis catus). , 1997, The Journal of heredity.

[209]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[210]  K. Webster,et al.  Low magnification confocal microscopy of tumor angiogenesis. , 2014, Methods in molecular biology.

[211]  Richard Cole,et al.  Live-cell imaging , 2014, Cell adhesion & migration.

[212]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[213]  A. Diaspro Confocal and two-photon microscopy : foundations, applications, and advances , 2001 .

[214]  S. Shorte,et al.  Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. , 2008, Biophysical journal.

[215]  P. Devilee,et al.  Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84 , 2004, Human Genetics.

[216]  Masafumi Oshiro,et al.  Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter , 1997, Photochemistry and photobiology.

[217]  Yuval Garini,et al.  From micro to nano: recent advances in high-resolution microscopy. , 2005, Current opinion in biotechnology.

[218]  H. Scherthan,et al.  Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. , 1998, Genome research.

[219]  H. Tanke,et al.  Simultaneous mapping of human papillomavirus integration sites and molecular karyotyping in short-term cultures of cervical carcinomas by using 49-color combined binary ratio labeling fluorescence in situ hybridization. , 2002, Cancer genetics and cytogenetics.

[220]  J. Lejeune,et al.  [Study of somatic chromosomes from 9 mongoloid children]. , 1959, Comptes rendus hebdomadaires des seances de l'Academie des sciences.

[221]  D. Ward,et al.  In situ hybridization banding of human chromosomes with Alu-PCR products: a simultaneous karyotype for gene mapping studies. , 1991, Genomics.

[222]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[223]  E. Salmon,et al.  Proper Alignment and Adjustment of the Light Microscope , 2003, Current protocols in human genetics.

[224]  H. Chiarini-Garcia,et al.  Light Microscopy , 2020, Methods in Molecular Biology.

[225]  J Vrolijk,et al.  New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling , 1999, European Journal of Human Genetics.

[226]  R. Feulgren,et al.  Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die- darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. , 1924 .

[227]  A. Emery,et al.  Human Cytogenetics. A Practical Approach , 1987 .

[228]  T. Caspersson Quantitative tumor cytochemistry--G.H.A. Clowes Memorial Lecture. , 1979, Cancer research.

[229]  Kwanghun Chung,et al.  Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues , 2016, Nature Biotechnology.

[230]  F. Kasten,et al.  History of staining , 1984 .

[231]  Ulrike Endesfelder,et al.  From single molecules to life: microscopy at the nanoscale , 2016, Analytical and Bioanalytical Chemistry.

[232]  R. Newman,et al.  Fluorescent protein-based biosensors : methods and protocols , 2014 .

[233]  R. Tsien,et al.  Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein , 2004, Nature Biotechnology.

[234]  G van den Engh,et al.  A random-walk/giant-loop model for interphase chromosomes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[235]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[236]  T. Cremer,et al.  Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus , 2004, Human Genetics.

[237]  Stavros G Demos,et al.  Real-time microscopic imaging of esophageal epithelial disease with autofluorescence under ultraviolet excitation. , 2009, Optics express.

[238]  L. Pagliaro,et al.  Fibre optic scrambling in light microscopy: A computer simulation and analysis , 1994, Journal of microscopy.

[239]  Gert Auer,et al.  Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping , 1997, Journal of Molecular Medicine.

[240]  R D Allen,et al.  Video-enhanced contrast polarization (AVEC-POL) microscopy: a new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris. , 1981, Cell motility.

[241]  I. Bar-Am,et al.  Signal to noise analysis of multiple color fluorescence imaging microscopy. , 1999, Cytometry.

[242]  M. H. Kaplan,et al.  LOCALIZATION OF A N T I G E N I N TISSUE CELLS I I . IMPROVEMENTS IN A METHOD FOR THE DETECTION OF ANTIGEN BY MEANS OF FLUORESCENT ANTIBODY*' , 2003 .

[243]  K. Nugent,et al.  Quantitative phase‐amplitude microscopy I: optical microscopy , 2002, Journal of microscopy.

[244]  R D Allen,et al.  Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. , 1981, Cell motility.

[245]  H. Lawce,et al.  The AGT cytogenetics laboratory manual , 2017 .

[246]  S Inoué,et al.  Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy , 1981, The Journal of cell biology.

[247]  K. Sullivan,et al.  Using time-lapse confocal microscopy for analysis of centromere dynamics in human cells. , 1999, Methods in cell biology.

[248]  H. Siedentopf,et al.  Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser , 1902 .

[249]  Christophe Zimmer,et al.  smiFISH and FISH-quant – a flexible single RNA detection approach with super-resolution capability , 2016, Nucleic acids research.

[250]  Sandra M. Baker-Groberg,et al.  Quantitative optical microscopy: measurement of cellular biophysical features with a standard optical microscope. , 2014, Journal of visualized experiments : JoVE.

[251]  B. Trask,et al.  Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei , 1997, Chromosome Research.