Fine-Scale Statistics for the Multidimensional Farey Sequence

We generalize classical results on the gap distribution (and other fine-scale statistics) for the one-dimensional Farey sequence to arbitrary dimension. This is achieved by exploiting the equidistribution of horospheres in the space of lattices, and the equidistribution of Farey points in a certain subspace of the space of lattices. The argument follows closely the general approach developed by A. Strombergsson and the author [Ann. Math. 172:1949–2033, 2010].

[1]  A. Zaharescu,et al.  Farey fractions and two-dimensional tori , 2006 .

[2]  Han Li,et al.  Effective limit distribution of the Frobenius numbers , 2011, Compositio Mathematica.

[3]  Akshay Venkatesh,et al.  Small solutions to linear congruences and Hecke equidistribution , 2005 .

[4]  On the probability of a random lattice avoiding a large convex set , 2010, 1008.3805.

[5]  A. Zhigljavsky,et al.  Asymptotic Distribution of the Distance Function to the Farey Points , 1997 .

[6]  D. Zagier Eisenstein Series and the Riemann Zeta-Function , 1981 .

[7]  J. Marklof The asymptotic distribution of Frobenius numbers , 2009, 0902.3557.

[8]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[9]  Andreas Strömbergsson On the uniform equidistribution of long closed horocycles , 2004 .

[10]  J. Marklof,et al.  The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems , 2007, 0706.4395.

[11]  C. McMullen,et al.  Gaps in √n mod 1 and ergodic theory , 2004 .

[12]  Jens Marklof,et al.  Kinetic transport in the two-dimensional periodic Lorentz gas , 2008 .

[13]  Y. Cheung,et al.  A Poincar\'e section for horocycle flow on the space of lattices , 2012, 1206.6597.

[14]  P. Sarnak Asymptotic behavior of periodic orbits of the horocycle flow and eisenstein series , 1981 .

[15]  Horospheres and Farey fractions , 2010, 1003.4613.

[16]  G. Margulis,et al.  Logarithm laws for unipotent flows, I , 2008, 0811.2806.

[17]  J. Marklof The $\bm{n}$-point correlations between values of a linear form , 2000, Ergodic Theory and Dynamical Systems.

[18]  P. Erdös A NOTE ON FAREY SERIES , 1943 .

[19]  Alexandru Zaharescu,et al.  The correlations of Farey fractions , 2004 .