Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story

Abstract  Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail.

[1]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[2]  V B Kazantsev,et al.  Olivo-cerebellar cluster-based universal control system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Kris M. Horn,et al.  Discharge of inferior olive cells during reaching errors and perturbations , 2004, Brain Research.

[4]  Michael Ariel,et al.  Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. , 2009, Journal of neurophysiology.

[5]  R. Llinás,et al.  The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells , 2004, Experimental Brain Research.

[6]  P Strata,et al.  Functional aspects of the inferior olive. , 1982, Archives italiennes de biologie.

[7]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[8]  R. Llinás,et al.  Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. , 1993, The Journal of physiology.

[9]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.

[10]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[11]  Kris M. Horn,et al.  Erratum to “Discharge of inferior olive cells during reaching errors and perturbations” [Brain Res. 996 (2004) 148–158] , 2004, Brain Research.

[12]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[13]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[14]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[15]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[16]  R. Huganir,et al.  Reevaluating the Role of LTD in Cerebellar Motor Learning , 2011, Neuron.

[17]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  T. Ebner,et al.  Use of voltage-sensitive dyes and optical recordings in the central nervous system , 1995, Progress in Neurobiology.

[19]  M. Ito,et al.  Cerebellar long-term depression. , 1996, Trends in neurosciences.

[20]  A. Biewener Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[21]  Y Yarom,et al.  The Olivocerebellar System as a Generator of Temporal Patterns , 2002, Annals of the New York Academy of Sciences.

[22]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[23]  J. Eccles,et al.  Excitation of Cerebellar Purkinje Cells by the Climbing Fibres , 1964, Nature.

[24]  Masao Ito,et al.  Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex , 1982, Neuroscience Letters.

[25]  Ilan Lampl,et al.  Rhythmic Episodes of Subthreshold Membrane Potential Oscillations in the Rat Inferior Olive Nuclei In Vivo , 2007, The Journal of Neuroscience.

[26]  J. Voogd,et al.  Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: Anterograde tracing combined with immunocytochemistry , 1989, The Journal of comparative neurology.

[27]  K. Doya,et al.  Chaos may enhance information transmission in the inferior olive. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Henrik Jörntell,et al.  Reciprocal Bidirectional Plasticity of Parallel Fiber Receptive Fields in Cerebellar Purkinje Cells and Their Afferent Interneurons , 2002, Neuron.

[29]  M. Ito,et al.  The origin of cerebellar-induced inhibition of Deiters neurones I. Monosynaptic initiation of the inhibitory postsynaptic potentials , 2004, Experimental Brain Research.

[30]  R. Llinás,et al.  Patterns of Spontaneous Purkinje Cell Complex Spike Activity in the Awake Rat , 1999, The Journal of Neuroscience.

[31]  R. Llinás,et al.  Eighteenth Bowditch lecture. Motor aspects of cerebellar control. , 1974, The Physiologist.

[32]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[33]  C. I. De Zeeuw,et al.  Timing in the cerebellum: oscillations and resonance in the granular layer , 2009, Neuroscience.

[34]  A.M. Annaswamy,et al.  Synchronization of Animal-Inspired Multiple High-Lift Fins in an Underwater Vehicle Using Olivo–Cerebellar Dynamics , 2008, IEEE Journal of Oceanic Engineering.

[35]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[36]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[37]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[38]  G. Cavagna,et al.  The sources of external work in level walking and running. , 1976, The Journal of physiology.

[39]  J. Albus A Theory of Cerebellar Function , 1971 .

[40]  M. Bennett,et al.  Electrical synapses, a personal perspective (or history) , 2000, Brain Research Reviews.

[41]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Thierry Nieus,et al.  A Realistic Large-Scale Model of the Cerebellum Granular Layer Predicts Circuit Spatio-Temporal Filtering Properties , 2009, Front. Cell. Neurosci..

[43]  R. Llinás,et al.  Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex , 1996, The Journal of Neuroscience.

[44]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[45]  R. Llinás,et al.  An electrophysiological study of the in vitro, perfused brain stem‐cerebellum of adult guinea‐pig. , 1988, The Journal of physiology.

[46]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[47]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[48]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[49]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[50]  T. Tsumoto,et al.  Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Michael Ariel,et al.  Latencies of climbing fiber inputs to turtle cerebellar cortex. , 2005, Journal of neurophysiology.

[52]  N. C. Sharp,et al.  Timed running speed of a cheetah (Acinonyx jubatus) , 1997 .

[53]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[54]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[55]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[56]  R. Llinás,et al.  The Functional Organization of the Olivo‐Cerebellar System as Examined by Multiple Purkinje Cell Recordings , 1989, The European journal of neuroscience.

[57]  R. Llinás,et al.  Role of gap junctions in synchronized neuronal oscillations in the inferior olive. , 2005, Journal of neurophysiology.

[58]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[59]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[60]  R. Llinás,et al.  In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns , 2007, Proceedings of the National Academy of Sciences.

[61]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[62]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[63]  J. Wessberg,et al.  Organization of motor output in slow finger movements in man. , 1993, The Journal of physiology.

[64]  R. Llinás,et al.  The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study , 2001, The European journal of neuroscience.

[65]  E. J. Lang,et al.  GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. , 2002, Journal of neurophysiology.

[66]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[67]  Yasushi Nakada,et al.  Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  W. Crill Unitary multiple-spiked responses in cat inferior olive nucleus. , 1970, Journal of neurophysiology.

[69]  B. Hu,et al.  Functional architecture and spike timing properties of corticofugal projections from rat ventral temporal cortex. , 2008, Journal of neurophysiology.

[70]  M. Mauk,et al.  Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses , 2002, Nature.

[71]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[72]  E. J. Lang,et al.  Organization of Olivocerebellar Activity in the Absence of Excitatory Glutamatergic Input , 2001, The Journal of Neuroscience.

[73]  D. Armstrong,et al.  A quantitative study of the purkinje cells in the cerebellum of the albino rat , 1970, The Journal of comparative neurology.

[74]  John H Freeman,et al.  Developmental changes in evoked Purkinje cell complex spike responses. , 2003, Journal of neurophysiology.

[75]  J. Bower,et al.  Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. , 1983, Journal of neurophysiology.

[76]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[77]  Sanford L. Palay,et al.  The Golgi Cells , 1974 .

[78]  R. Llinás,et al.  Inferior olive: its role in motor learing , 1975, Science.