Boron-based composite energetic materials (B-CEMs): Preparation, combustion and applications

[1]  V. Zarko,et al.  Contemporary methods to measure regression rate of energetic materials: A review , 2022, Progress in Energy and Combustion Science.

[2]  E. Dreizin,et al.  Titanium-boron reactive composite powders with variable morphology prepared by arrested reactive milling , 2022, Fuel.

[3]  P. Badica,et al.  Combustion products agglomeration of propellant containing boron with fluorinated coatings , 2021, Combustion and Flame.

[4]  Xiaolin Zheng,et al.  Probing boron thermite energy release at rapid heating rates , 2021 .

[5]  E. Dreizin,et al.  Ignition Mechanisms of Reactive Nanocomposite Powders Combining Al, B, and Si as Fuels with Metal Fluorides as Oxidizers , 2021, Combustion Science and Technology.

[6]  Xiaolin Zheng,et al.  Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. , 2021, ACS applied materials & interfaces.

[7]  T. P. Weihs,et al.  Comparing the ignition and combustion characteristics of ball-milled Al-based composites with Ti, Zr, and Mg additives , 2021, Journal of Energetic Materials.

[8]  E. Dreizin,et al.  Spherical boron powders prepared by mechanical milling in immiscible liquids , 2021 .

[9]  R. Rioux,et al.  Surface-Functionalized Boron Nanoparticles with Reduced Oxide Content by Nonthermal Plasma Processing for Nanoenergetic Applications. , 2021, ACS applied materials & interfaces.

[10]  Z. Mansurov Recent Achievements and Future Challenges in Nanoscience and Nanotechnology , 2020, Eurasian Chemico-Technological Journal.

[11]  Xiaolin Zheng,et al.  Facilitating laser ignition and combustion of boron with a mixture of graphene oxide and graphite fluoride , 2020 .

[12]  M. Pantoya,et al.  On the possible coexistence of two different regimes of metal particle combustion , 2020 .

[13]  E. Dreizin,et al.  Bismuth fluoride-coated boron powders as enhanced fuels , 2020 .

[14]  Jianzhong Liu,et al.  Nano carbides-mediated acceleration of energy release behavior of amorphous boron during ignition and combustion , 2020 .

[15]  Y. Sohn,et al.  Room temperature electroless Ni-coating on boron particles: Physicochemical and oxidation-resistance properties , 2020 .

[16]  H. Hng,et al.  Combustion Characteristics of Fluoropolymer Coated Boron Powders , 2020, Combustion Science and Technology.

[17]  I. Altman On energy accommodation coefficient of gas molecules on metal surface at high temperatures , 2020 .

[18]  Hongtao Yang,et al.  B/Metal composites’ thermochemical properties and their effect on the performance of an ammonium perchlorate propellant , 2020 .

[19]  A. Navrotsky Nanoparticles , 2020, Managing Human and Social Systems.

[20]  Q. Jiao,et al.  Ignition and Combustion Behavior of Sintered‐B/MgB 2 Combined with KNO 3 , 2020 .

[21]  Yang Xu,et al.  Liquid phase in-situ synthesis of LiF coated boron powder composite and performance study , 2020 .

[22]  F. Zhao,et al.  Al-Based Nano-Sized Composite Energetic Materials (Nano-CEMs): Preparation, Characterization, and Performance , 2020, Nanomaterials.

[23]  E. Dreizin,et al.  Effect of boron content in B·BiF3 and B·Bi composites on their ignition and combustion , 2020 .

[24]  R. Artiaga,et al.  Preparation and Combustion Performance of B/PVDF/Al Composite Microspheres , 2020 .

[25]  Yu. V. Frolov,et al.  Prospects of Using Boron Powders As Fuel. II. Influence of Aluminum and Magnesium Additives and Their Compounds on the Thermal Behavior of Boron Oxide , 2020 .

[26]  E. Dreizin,et al.  Zirconium-boron reactive composite powders prepared by arrested reactive milling , 2020, Journal of Energetic Materials.

[27]  E. Dreizin,et al.  Effect of Purity, Surface Modification and Iron Coating on Ignition and Combustion of Boron in Air , 2019 .

[28]  M. Varshney,et al.  Combustion performance studies of aluminum and boron based composite solid propellants in sub-atmospheric pressure regimes , 2019 .

[29]  E. Dreizin,et al.  Heterogeneous reaction kinetics for oxidation and combustion of boron , 2019 .

[30]  E. Dreizin,et al.  Transition Metal Catalysts for Boron Combustion , 2019 .

[31]  E. Dreizin,et al.  Combustion of Composites of Boron with Bismuth and Cobalt Fluorides in Different Environments , 2019 .

[32]  W. Cao,et al.  Study on Energy Output Characteristics of Explosives Containing B/Al in the Air Blast , 2019, Combustion, Explosion, and Shock Waves.

[33]  S. A. Hashim,et al.  Effects of Ti and Mg particles on combustion characteristics of boron–HTPB-based solid fuels for hybrid gas generator in ducted rocket applications , 2019, Acta Astronautica.

[34]  Xiaolin Zheng,et al.  Experimental effective metal oxides to enhance boron combustion , 2019, Combustion and Flame.

[35]  M. Pantoya,et al.  Single Particle Combustion of Pre-Stressed Aluminum , 2019, Materials.

[36]  I. Altman Burn Time of Metal Nanoparticles , 2019, Materials.

[37]  E. Dreizin,et al.  Reactive Shell Model for Boron Oxidation , 2019, The Journal of Physical Chemistry C.

[38]  E. Dreizin,et al.  Boron-Metal Fluoride Reactive Composites: Preparation and Reactions Leading to Their Ignition , 2019, Journal of Propulsion and Power.

[39]  E. Dreizin,et al.  Boron doped with iron: Preparation and combustion in air , 2019, Combustion and Flame.

[40]  E. Dreizin,et al.  Fluorine-containing oxidizers for metal fuels in energetic formulations , 2019, Defence Technology.

[41]  S. Rashkovskiy Boron particle agglomeration and formation of solid residues in combustion of boron-containing solid propellants , 2018, Acta Astronautica.

[42]  Jianzhong Liu,et al.  Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend , 2019, Aerospace Science and Technology.

[43]  Tao Wu,et al.  Boron ignition and combustion with doped δ-Bi2O3: Bond energy/oxygen vacancy relationships , 2018, Combustion and Flame.

[44]  G. Ermolaev,et al.  Diffusion Model of Combustion of Large Boron Particles , 2018 .

[45]  Shi Yan,et al.  Preparation and characterization of sintered B/MgB 2 as heat release material , 2018, Journal of Alloys and Compounds.

[46]  I. Fomenkov,et al.  Comparative Analysis of Boron Powders Obtained by Various Methods. I. Microstructure and Oxidation Parameters during Heating , 2018, Combustion, explosion, and shock waves.

[47]  S. Karmakar,et al.  Boron for liquid fuel Engines-A review on synthesis, dispersion stability in liquid fuel, and combustion aspects , 2018 .

[48]  E. Dreizin,et al.  Combustion of boron and boron–iron composite particles in different oxidizers , 2018, Combustion and Flame.

[49]  Scott E. Munro,et al.  A study of solid ramjet fuel containing boron–magnesium mixtures , 2017 .

[50]  Jianzhong Liu,et al.  Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet , 2017 .

[51]  E. Dreizin,et al.  Boron-based reactive materials with high concentrations of iodine as a biocidal additive , 2017 .

[52]  R. Yetter,et al.  Metal-based nanoenergetic materials: Synthesis, properties, and applications , 2017 .

[53]  E. Dreizin,et al.  Effect of purity and surface modification on stability and oxidation kinetics of boron powders , 2017 .

[54]  W. Cao,et al.  Preparation and Characterization of Metalized Explosive Containing B and Al Powder , 2017 .

[55]  Mei-fang Du,et al.  Preparation of silane-capped boron nanoparticles with enhanced dispersibility in hydrocarbon fuels , 2017 .

[56]  Song Wang,et al.  Combustion of Boron and Boron-Containing Reactive Composites in Laminar and Turbulent Air Flows , 2017 .

[57]  V. Arkhipov,et al.  Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants , 2017 .

[58]  Songsong Hu,et al.  Factors Affecting the Primary Combustion Products of Boron-Based Fuel-Rich Propellants , 2017 .

[59]  S. Rashkovskiy Direct Numerical Simulation of Boron Particle Agglomeration in Combustion of Boron-Containing Solid Propellants , 2017 .

[60]  K. Cen,et al.  Composition and characteristics of primary combustion products of boron-based propellants , 2017 .

[61]  Song Wang,et al.  Nanocomposite Thermites with Calcium Iodate Oxidizer , 2017 .

[62]  A. Philippov,et al.  Simulation of boron and carbon fiber composite characteristics of the elasticity , 2017 .

[63]  E. Dreizin,et al.  Oxidation kinetics and combustion of boron particles with modified surface , 2016 .

[64]  A. Han,et al.  Preparation and Properties of Boron-Based Nano-B/CuO Thermite , 2016 .

[65]  E. Dreizin,et al.  Combustion of boron particles in products of an air-acetylene flame , 2016 .

[66]  Jianzhong Liu,et al.  Improvement in energy release properties of boron-based propellant by oxidant coating , 2016 .

[67]  Y. Sohn,et al.  Combustion of boron particles coated with an energetic polymer material , 2016, Korean Journal of Chemical Engineering.

[68]  Shengyuan Xu,et al.  Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions , 2016 .

[69]  Song Wang,et al.  Ignition and combustion of boron-based Al·B·I2 and Mg·B·I2 composites , 2016 .

[70]  Jianzhong Liu,et al.  Combustion Characteristics and Propulsive Performance of Boron/Ammonium Perchlorate Mixtures in Microtubes , 2016 .

[71]  M. Shekarriz,et al.  Surface Passivation of Bare Boron Nanoparticles Using New Dicyanamide-Based Dicationic Ionic Liquid , 2016 .

[72]  Hong Ying,et al.  Modification of Boron Nanoparticles and Its Effect on Boron/Nitrocellulose Nanofibers , 2016 .

[73]  Zhou Junhu,et al.  Research Progress in Coating Mechanism and Technology of Boron Particles , 2016 .

[74]  D. Ping,et al.  Effect of Boron-containing Hydrogen-storage-alloy (Mg(BHx)y) on the Explosion Energy of Nitric Ester Explosive , 2016 .

[75]  Mingquan Ye,et al.  Preparation and Properties of Boron‐Based Nano‐B/NiO Thermite , 2015 .

[76]  Songsong Hu,et al.  Chemical analysis of primary combustion products of boron-based fuel-rich propellants , 2015 .

[77]  Matthew M. Biss,et al.  Chemical Imaging of Explosions – Mapping BO2 Light Emission , 2015 .

[78]  Z. Xia,et al.  Boron Particle Combustion in Solid Rocket Ramjets , 2015 .

[79]  Ghanshyam L. Vaghjiani,et al.  Binding of alkenes and ionic liquids to B-H-functionalized boron nanoparticles: creation of particles with controlled dispersibility and minimal surface oxidation. , 2015, ACS applied materials & interfaces.

[80]  Peijin Liu,et al.  Ignition and combustion characteristics of compound of magnesium and boron , 2015, Journal of Thermal Analysis and Calorimetry.

[81]  R. Yetter,et al.  Boron and Polytetrafluoroethylene as a Fuel Composition for Hybrid Rocket Applications , 2015 .

[82]  Q. Yao,et al.  Combustion characteristics of aluminum and boron nanoparticles based on flame color images , 2015 .

[83]  Yu. V. Frolov,et al.  Boron Particles Agglomeration and Slag Formation During Combustion of Energetic Condensed Systems , 2015 .

[84]  A. Al-Azzawi,et al.  Mechanical Alloying and Milling , 2015 .

[85]  Yang Yan-jin Applications of Hydrogen-storage Materials in High-energy Solid Rocket Propellants , 2015 .

[86]  Daniel F. Rodriguez Hydrogen generation from ammonia borane and water through the combustion reactions with mechanically alloyed Al/Mg powder , 2015 .

[87]  Jianzhong Liu,et al.  Effect of metal hydrides on the burning characteristics of boron , 2014 .

[88]  E. Dreizin Effect of surface tension on the temperature of burning metal droplets , 2014 .

[89]  J. H. Zhou,et al.  Ignition, combustion, and oxidation of mixtures of amorphous and crystalline boron powders , 2014 .

[90]  Jianzhong Liu,et al.  Ignition and Combustion of Boron Particles at One to Ten Standard Atmosphere , 2014 .

[91]  A. Gany Thermodynamic limitation on boron energy realization in ramjet propulsion , 2014 .

[92]  Jianzhong Liu,et al.  Effect of magnesium on the burning characteristics of boron particles , 2014 .

[93]  Qingqing Zha,et al.  Ignition Temperature of Metal Fuel in Different Atmosphere , 2014 .

[94]  Hu Xiu-l Effect of boron powder and agglomerated boron particles on the rheological property of HTPB , 2014 .

[95]  Xie Zhong-yua Combustion Performance of Boron Coated with AP , 2014 .

[96]  Shen Lian-hu Preparation of Al/B/Fe_2O_3 nano-composite energetic materials by high energy ball milling , 2014 .

[97]  F. Zhao,et al.  Combustion Characteristics and Mechanism of Boron-based, Fuel-rich Propellants with Agglomerated Boron Powder , 2014 .

[98]  N. Yan,et al.  Effects of Different Metal Fuels on the Characteristics for HTPB-based Fuel Rich Solid Propellants , 2013 .

[99]  K. Dooley,et al.  Effects of rare-earth oxide catalysts on the ignition and combustion characteristics of boron nanoparticles , 2013 .

[100]  Shi Yan,et al.  Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling , 2013 .

[101]  Dennis H. Mayo,et al.  Combustion Behavior of Solid Fuels Based on PTFE/Boron Mixtures , 2013 .

[102]  R. Rogers,et al.  Exploring the Structure of Nitrogen-Rich Ionic Liquids and Their Binding to the Surface of Oxide-Free Boron Nanoparticles , 2013 .

[103]  Feng Xueson Energy Research of Explosive Containing Hydrogen Storage Alloy , 2013 .

[104]  Pan Gong-pei Application of Different Particle Sizes of Boron in Mg/PTFE Pyrotechnic Compositions , 2013 .

[105]  Xing Jian-fe Effects of coating agents on the ignition and combustion of boron particles , 2013 .

[106]  Zhang Chun-min EFFECT OF PARTICLE SIZE GRADING ON THE ADDING PROPERTY OF AGGLOMERATED BORON POWDER , 2013 .

[107]  A. We Effects of Particle Size and Crystalline Form on the Ignition and Combustion Characteristics of Boron Particles , 2013 .

[108]  W. Zhang Surface and Interface Actions of Agglomerated Boron Particles with Different Binders , 2013 .

[109]  Liao Yong-Hong Characteristics of B/Mg compounds and the effect on the burning rate properties for fuel-rich propellant , 2013 .

[110]  Hu Xiu-l Research on properties of boron agglomerated with energetic binder , 2013 .

[111]  V. Zarko,et al.  Formation of Al oxide particles in combustion of aluminized condensed systems , 2013 .

[112]  M. Keshavarz,et al.  The Advantages and Shortcomings of Using Nano-sized Energetic Materials , 2013 .

[113]  R. Rogers,et al.  Functionalization and Passivation of Boron Nanoparticles with a Hypergolic Ionic Liquid (Pre-Print) , 2012 .

[114]  J. Hooper,et al.  Development of metal cluster-based energetic materials at NSWC-IHD , 2012 .

[115]  Zhe Gao,et al.  Preparation of dopamine-modified boron nanoparticles , 2012 .

[116]  E. Dreizin,et al.  Combustion of micron-sized particles of titanium and zirconium , 2012 .

[117]  L. Qiao,et al.  Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations , 2012 .

[118]  Wang Ying-hong Research on the combustion heat testing of boron with double base propellant as combustion improver , 2012 .

[119]  Wang Ying-hong Effects of Fules on Primary Combustion of Boron Based Fuel-rich Propellant , 2012 .

[120]  Hu Song-qi Research on the Effect of Prescription on the Adiabatic Flame temperature of the Boron Based Fuel-rich Propellant , 2012 .

[121]  Xu Hui-xiang Energy and Combustion Characteristics of Fuel-rich Propellant with Agglomerated Boron Particles , 2012 .

[122]  R. Yetter,et al.  COMBUSTION OF PTFE-BORON COMPOSITIONS FOR PROPULSION APPLICATIONS , 2012 .

[123]  Xue-zhong Fan,et al.  Application of Amorphous Boron Granulated With Hydroxyl‐ Terminated Polybutadiene in Fuel‐Rich Solid Propellant , 2011 .

[124]  Ren Xian-jing RESEARCH ON THE COATED AND AGGLOMERATED BORON POWDER BY SPRAY DRYING METHOD , 2011 .

[125]  F. Xue-zhong Fractal Dimension Calculation on Roughness and Size Distribution of Agglomerated Boron Particles and Its Relationship with Rheological Properties for Fuel-rich Propellant , 2011 .

[126]  A. Reina,et al.  Heterogeneity e ects on agglomeration in aluminized solid propellants loaded with MgB powders , 2011 .

[127]  Jijun Zhao,et al.  Al–Mg–B thin films prepared by magnetron sputtering , 2010 .

[128]  A. Reina,et al.  Aggregation and Incipient Agglomeration in Metallized Solid Propellants and Solid Fuels for Rocket Propulsion , 2010 .

[129]  E. Dreizin,et al.  Characterization of Fine Nickel-Coated Powder as Potential Fuel Additive , 2010 .

[130]  M. Pfitzner,et al.  Extended combustion model for single boron particles – Part II: Validation , 2010 .

[131]  M. Pfitzner,et al.  Extended combustion model for single boron particles – Part I: Theory , 2010 .

[132]  S. Anthonysamy,et al.  Studies on the ignition behaviour of boron powder , 2010 .

[133]  S. Su,et al.  Preparation and Characterization of Poly (Styrene-Co-Maleic Anhydride)-Modified Boron Particles , 2010 .

[134]  Xu Hui-xiang Rheological Properties of Agglomerated Boron Particles in the HTPB-based Fuel-rich Propellant , 2010 .

[135]  Shao Chong-bin Optimization of Preparation Process for Spherical Agglomerated Boron Particles , 2010 .

[136]  F. Xue-zhong Bulk Density of Different Sizes of Agglomerated Boron Particles , 2010 .

[137]  Liao Yong-Hong Studies on the modified surface of amorphous boron powder by different chemical origins , 2010 .

[138]  Irīna Boiko,et al.  Al-W-B powder materials , 2010 .

[139]  S. Anderson,et al.  Air-stable, unoxidized, hydrocarbon-dispersible boron nanoparticles , 2009 .

[140]  E. Dreizin,et al.  Metal-based reactive nanomaterials , 2009 .

[141]  Wang Chun-hua Effect of coated and agglomerated boron on combustion characteristics of boron-based fuel-rich propellants , 2009 .

[142]  F. Xue-zhong Application Progress of Metal Fuels in Solid Propellants , 2009 .

[143]  Dai Zhi-xin Experimental Research of Underwater Energy of Explosive Containing Boron/Metal , 2009 .

[144]  C. Yi Study on Thermokinetics Analysis of B/CuO Delay Composition , 2009 .

[145]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[146]  Hongying Dong,et al.  Coating different thickness nickel–boron nanolayers onto boron carbide particles , 2008 .

[147]  A. Varma,et al.  Noncatalytic hydrothermolysis of ammonia borane , 2008 .

[148]  M. Zachariah,et al.  Combustion characteristics of boron nanoparticles , 2008 .

[149]  Ji Zhuang-zhou Effect of oxidizer and agglomerated boron particle size on burning rate of fuel-rich propellants , 2008 .

[150]  Ji Zhuang-zhou Effect of agglomerated boron on combustion properties of fuel-rich propellants , 2008 .

[151]  Guan Da-lin Ignition characteristics of boron-based fuel-rich propellants , 2008 .

[152]  Hu Song-qi Agglomerated Technology for Amorphous Boron Powder , 2008 .

[153]  Lu Jun Effect of Mg and Al Powders on Combustion Performance of Boron-based Fuel-rich Propellant and Oxidation Efficiency of Boron , 2008 .

[154]  Gan Xiao-xian Rheological characteristic of agglomerated boron powder with HTPB mixture , 2008 .

[155]  Zhao Feng-qi,et al.  Establishment of the Primary Combustion Model of Fuel-rich Solid Propellant with Agglomerated Boron Powder , 2008 .

[156]  Zhang Qing-jie OXIDATION BEHAVIOR OF TiB_2 DURING BALL-MILLING , 2008 .

[157]  Ze Zhi-hong Combustion of Fuel-Rich Based on Boron Solid Propellant with KP , 2008 .

[158]  A. Gromov,et al.  Combustion of the “Ti–TiO2” and “Ti–Al” powdery mixtures in air , 2008 .

[159]  Vigor Yang,et al.  Modeling of combustion and ignition of solid-propellant ingredients , 2007 .

[160]  Kaili Zhang,et al.  Nanoenergetic Materials for MEMS: A Review , 2007, Journal of Microelectromechanical Systems.

[161]  Li Feng-sheng Effect of Superfine Boron Diameter on the Thermal Properties of B/AP Composite , 2007 .

[162]  Kou Kaichang Research on the coating of superfine boron particles with HTPB , 2007 .

[163]  Sun Zhen-hua Progress in Combustion Characteristics of Boron-Based Fuel-Rich Propellant , 2007 .

[164]  Guo Ji-ying Improvement for AP Coating Superfine Boron Powder , 2007 .

[165]  Ji Zhuang-zhou Effect of Coating and Agglomerating on Combustion of Boron , 2007 .

[166]  Li Xiao-yu Purification of Amorphous Boron Powder with Solvents , 2007 .

[167]  E. Dreizin,et al.  Combustion of Boron-Titanium Nanocomposite Powders in Different Environments , 2006 .

[168]  Guo Ji-ying,et al.  The Influence of Agglomerated Boron on Burning Rate of Fuel-rich Solid Propellant , 2006 .

[169]  Mao Gen-wang,et al.  Explosion Performance of Thermobaric Fuel Containing Boron , 2006 .

[170]  Zhang Qiong-fang Coating of boron particles and combustion residue analysis of boron-based solid propellants , 2006 .

[171]  V. A. Babuk,et al.  Burning of Nano-Aluminized Composite Rocket Propellants , 2005 .

[172]  K. Puduppakkam,et al.  COMBUSTION MODELING OF GLYCIDYL AZIDE POLYMER WITH DETAILED KINETICS , 2005 .

[173]  S. A. Rashkovskii Statistical simulation of aluminum agglomeration during combustion of heterogeneous condensed mixtures , 2005 .

[174]  L. D. Luca,et al.  Direct Numerical Simulation of Aluminum Agglomeration in Composite Solid Propellant Combustion , 2005 .

[175]  Kou Kai-chang Surface Coating of Superfine Boron Particles With Lithium Fluoride , 2005 .

[176]  Zhou Ming-chuan Effect of Modified Boron Powder on Propellant Processing Characteristics , 2005 .

[177]  Zhang Qiong Research on the Surface Coating of Superfine Boron Particles with PBT , 2005 .

[178]  E. Dreizin,et al.  Fully dense nano-composite energetic powders prepared by arrested reactive milling , 2005 .

[179]  B. K. Athawale,et al.  Burning Rate Studies of Metal Powder (Ti, Ni)–Based Fuel-Rich Propellants , 2004 .

[180]  Xiao Xiu-you Effect of AP particle size and coating on combustion of boron , 2004 .

[181]  Li Jin-xian Study on Combustion Mechanism of Fuel-rich Propellant Holding Boron Coated with AP , 2004 .

[182]  Wu You-cheng Study on the Combustion Performance of B/Pb_3O_4 Pyrotechnic Compound , 2004 .

[183]  Kenneth K. Kuo,et al.  Nano-Sized Aluminum and Boron-Based Solid Fuel Characterization in a Hybrid Rocket Engine , 2003 .

[184]  E. Dreizin,et al.  Constant Volume Explosions of Aerosols of Metallic Mechanical Alloys and Powder Blends , 2003 .

[185]  R. Armstrong,et al.  Enhanced Propellant Combustion with Nanoparticles , 2003 .

[186]  Tai Hong-qin Effect of boron coated with AP on the rheological properties of slurry of fuel-rich propellant , 2003 .

[187]  Fan Hong Effect of GAP coating boron on the ignition performance and combustion residues for boron-based propellants , 2002 .

[188]  O. Glotov Condensed Combustion Products of Aluminized Propellants. III. Effect of an Inert Gaseous Combustion Environment , 2002 .

[189]  K. Kuo,et al.  Ignition and combustion of boron particles in fluorine-containing environments , 2001 .

[190]  O. Glotov Condensed combustion products of aluminized propellants. II. evolution of particles with distance from the burning surface , 2000 .

[191]  Edward P. Vicenzi,et al.  Phase changes in boron ignition and combustion , 1999 .

[192]  S. Li,et al.  Improvement of combustion characteristics of solid propellant with coated boron , 1999 .

[193]  H. Rabitz,et al.  Multi-phase model for ignition and combustion of boron particles , 1999 .

[194]  S. Rashkovsky Metal Agglomeration in Solid Propellants Combustion , 1998 .

[195]  H. Rabitz,et al.  Effect of fluorine on the combustion of “clean” surface boron particles , 1998 .

[196]  H. Rabitz,et al.  Effect of fluorine on the gasification rate of liquid boron oxide droplets , 1998 .

[197]  S. Rashkovsky Metal agglomeration in solid propellants combustion. Part 1: Dynamical model of process , 1998 .

[198]  A. Gany,et al.  Magnesium and Boron Combustion in Hot Steam Atmosphere , 1998 .

[199]  D. Emin,et al.  Isotope dependencies of Raman spectra of B{sub 12}As{sub 2}, B{sub 12}P{sub 2}, B{sub 12}O{sub 2}, and B{sub 12+x}C{sub 3{minus}x}: Bonding of intericosahedral chains , 1997 .

[200]  Tai-Kang Liu,et al.  Effect of fluorinated graphite on combustion of boron and boron-based fuel-rich propellants , 1996 .

[201]  K. Kuo,et al.  Ignition and combustion of boron particles , 1996 .

[202]  A. Gany,et al.  The boron/titanium composite particle - A novel approach for ignition enhancement , 1995 .

[203]  H. Krier,et al.  Shock initiation of crystalline boron in oxygen and fluorine compounds , 1995 .

[204]  Tai-Kang Liu,et al.  Combustion characteristics of GAP-coated boron particles and the fuel-rich solid propellant☆ , 1995 .

[205]  H. Rabitz,et al.  Kinetic model for hydrocarbon-assisted particulate boron combustion , 1994 .

[206]  A. Gany,et al.  Ignition of boron particles coated by a thin titanium film , 1993 .

[207]  Alon Gany,et al.  Effects of bypass air on boron combustion in solid fuel ramjets , 1993 .

[208]  Y. Oyumi,et al.  Urethane Reaction Mechanism on the Amorphous Boron Surface in GAP propellants , 1992 .

[209]  I. Glassman,et al.  A New Definition and Theory of Metal Pyrophoricity , 1992 .

[210]  Yu. V. Frolov,et al.  Combustion of boron-containing condensed systems , 1992 .

[211]  H. Rabitz,et al.  Kinetics of high temperature, hydrocarbon assisted boron combustion , 1992 .

[212]  Tai-Kang Liu,et al.  Effect of Boron Particle Surface Coating on combustion of solid propellants for ducted rockets , 1991 .

[213]  S. Li OPTICAL MEASUREMENT OF SIZE HISTORIES OF BORON PARTICLES IN IGNITION AND COMBUSTION STAGES , 1991 .

[214]  V. Yang,et al.  EFFECT OF MAGNESIUM-COATED BORON PARTICLES ON BURNING CHARACTERISTICS OF SOLID FUELS IN HIGH-SPEED CROSSFLOWS , 1991 .

[215]  V. Golovko,et al.  IGNITION AND COMBUSTION OF BORON IN CHLORINE , 1991 .

[216]  F. Williams,et al.  IGNITION AND COMBUSTION OF BORON PARTICLES , 1991 .

[217]  D. W. Netzer,et al.  Combustion studies of metallized fuels for solid-fuel ramjets , 1986 .

[218]  F. Thévenot,et al.  The correlation between the thermoelectric properties and stoichiometry in the boron carbide phase B4C-B10.5C , 1985 .

[219]  P. Antaki,et al.  A physical and chemical interpretation of boron particle combustion , 1985 .

[220]  Kenneth K. Kuo,et al.  Fundamentals of Solid-Propellant Combustion , 1984 .

[221]  J. Semple,et al.  Combustion of Boron Particles at Atmospheric Pressure , 1969 .