Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer

Time-lapse microgravity surveying combined with absolute gravity measurements is used to investigate water storage changes in a karst aquifer of similar to 100 km(2) area. The survey consists of 40 gravity stations measured with a relative gravimeter; absolute gravity is measured at three stations for each survey. In total, four gravity surveys are performed over a 2 year time period during consecutive wet and dry periods. Survey precisions range between 2.4 and 5 mu Gal, enabling statistically significant detection of 10 mu Gal change, i.e., similar to 0.25 m equivalent water level change. Observed gravity changes are coherent between consecutive survey periods, i.e., net water withdrawal and net water recharge is observed, reaching changes as high as 22 mu Gal. Observed gravity changes allow refining evapotranspiration estimates, which may serve to improve the water budget of the aquifer. High-and low-gravity amplitude zones characterize the karst system, demonstrating spatially variable storage behavior. Geomorphologic considerations are invoked to explain the location of preferential zones of water storage, and a conceptual model of water storage is discussed for the studied karst.

[1]  P. Williams The role of the subcutaneous zone in karst hydrology , 1983 .

[2]  P. Williams The role of the epikarst in karst and cave hydrogeology: a review , 2008 .

[3]  N. Krothe,et al.  Derivation of effective hydraulic parameters of a Karst Aquifer from discharge hydrograph analysis , 2001 .

[4]  François Anctil,et al.  Which potential evapotranspiration input for a lumped rainfall-runoff model?. Part 1—Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? , 2005 .

[5]  M. Bakalowicz Karst groundwater: a challenge for new resources , 2005 .

[6]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .

[7]  R. Reilinger,et al.  A snapshot (2003–2005) of the 3D postseismic deformation for the 1999, Mw = 7.4 İzmit earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring , 2007 .

[8]  M. Harnisch,et al.  Hydrological influences in long gravimetric data series , 2006 .

[9]  T. James,et al.  New constraints on Laurentide postglacial rebound from absolute gravity measurements , 2001 .

[10]  M. Vanclooster,et al.  Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations , 2006 .

[11]  J. Faller,et al.  A Portable Apparatus for Absolute Measurements of the Earth's Gravity , 1982 .

[12]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[13]  T. Jahr,et al.  Hydrological experiments around the superconducting gravimeter at Moxa Observatory , 2006 .

[14]  Y. Imanishi,et al.  Effect of underground water on gravity observation at Matsushiro, Japan , 2006 .

[15]  Dennis L. Harry,et al.  Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys , 2009 .

[16]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[17]  D. Carbone,et al.  Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily , 1997 .

[18]  Y. Fukuda,et al.  Hydrological effects on the superconducting gravimeter observation in Bandung , 2006 .

[19]  Pedro Viterbo,et al.  An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .

[20]  M. Camp,et al.  Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis , 2007 .

[21]  L. Timmen Precise definition of the effective measurement height of free-fall absolute gravimeters , 2003 .

[22]  C. Hwang,et al.  Adjustment of relative gravity measurements using weighted and datum-free constraints , 2002 .

[23]  J. Ferguson,et al.  The 4D microgravity method for waterflood surveillance: Part 3 — 4D absolute microgravity surveys at Prudhoe Bay, Alaska , 2008 .

[24]  J. Chéry,et al.  Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity , 2009 .

[25]  P. Jousset,et al.  Performance of two Scintrex CG3M instruments at the fourth International Comparison of Absolute Gravimeters , 1995 .

[26]  J. Chéry,et al.  Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France) , 2008 .

[27]  C. Braitenberg,et al.  The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004 , 2006 .

[28]  K. Larson,et al.  Measuring postglacial rebound with GPS and absolute gravity , 2000 .

[29]  F. Beauducel,et al.  Temporal gravity at Merapi during the 1993–1995 crisis: an insight into the dynamical behaviour of volcanoes , 2000 .

[30]  A. Mangin Contribution à l'étude hydrodynamique des aquifères karstiques , 1975 .

[31]  M. Ruymbeke,et al.  Karst aquifer investigation using absolute gravity , 2006 .

[32]  O. Francis,et al.  Uncertainty of absolute gravity measurements , 2005 .

[33]  Wenke Sun,et al.  Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement , 2002 .

[34]  P. Fleury,et al.  Caractérisation d'un système karstique à exutoire sous-marin : exemple de la mortola (Italie) , 2007 .

[35]  W. Prothero,et al.  The superconducting gravimeter , 1968 .

[36]  T. Jahr,et al.  Detection of small hydrological variations in gravity by repeated observations with relative gravimeters , 2008 .

[37]  J. Hinderer,et al.  Time Variations In Gravity And Inferences On The Earth's Structure And Dynamics , 2000 .

[38]  B. Dewandel,et al.  Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer , 2003 .

[39]  C. Beaumont,et al.  Nano variations in gravity due to seasonal groundwater movements: Implications for the gravitational detection of tectonic movements , 1977 .

[40]  D. Remy,et al.  Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Réunion) from microgravity monitoring , 2008 .

[41]  Michel Bakalowicz,et al.  Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France) , 2007 .

[42]  D. Pool,et al.  Measurements of Aquifer‐Storage Change and Specific Yield Using Gravity Surveys , 1995 .

[43]  Laurent Bruxelles Dépôts et altérites des plateaux du Larzac central : Causses de l'Hospitalet et de Campestre (Aveyron, Gard, Hérault). Evolution morphogénétique, conséquences géologiques et implications pour l'aménagement. , 2001 .

[44]  F. Dupont,et al.  Some critical factors for engineering and environmental microgravity investigations , 2002 .

[45]  Laurent Bruxelles Reconstitution morphologique du Larzac (Larzac central, Aveyron, France) : le rôle des formations superficielles , 2001 .

[46]  P. Perrochet,et al.  A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis , 2005 .

[47]  S. Tattari,et al.  Soil moisture and groundwater: two sources of gravity variations , 1988 .

[48]  V. Ballu,et al.  1985–1999 gravity field variations across the Asal Rift: insights on vertical movements and mass transfer , 2003 .

[49]  D. R. Bower,et al.  Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site , 1998 .

[50]  Timothy M. Niebauer,et al.  The Effective Measurement Height of Free-fall Absolute Gravimeters , 1989 .

[51]  J. Boy,et al.  Time variation of the European gravity field from superconducting gravimeters , 2005 .

[52]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[53]  H. L. Penman Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Y. Tamura A harmonic development of the tide-generating potential , 1987 .

[55]  Jennifer L. Hare,et al.  The 4-D microgravity method for waterflood surveillance: A model study for the Prudhoe Bay reservoir, Alaska , 1999 .

[56]  R. Warnant,et al.  Indication of the uplift of the Ardenne in long‐term gravity variations in Membach (Belgium) , 2004 .

[57]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[58]  Sébastien Merlet,et al.  Micro-gravity investigations for the LNE watt balance project , 2008 .

[59]  J. Boy,et al.  Study of the seasonal gravity signal in superconducting gravimeter data , 2006 .

[60]  John F. Ferguson,et al.  The 4D microgravity method for waterflood surveillance: Part II - Gravity measurements for the Prudhoe Bay reservoir, Alaska , 2007 .