Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer
暂无分享,去创建一个
Nicolas Le Moigne | Thomas Jacob | Roger Bayer | J. Chéry | R. Bayer | N. Moigne | Jean Chéry | T. Jacob
[1] P. Williams. The role of the subcutaneous zone in karst hydrology , 1983 .
[2] P. Williams. The role of the epikarst in karst and cave hydrogeology: a review , 2008 .
[3] N. Krothe,et al. Derivation of effective hydraulic parameters of a Karst Aquifer from discharge hydrograph analysis , 2001 .
[4] François Anctil,et al. Which potential evapotranspiration input for a lumped rainfall-runoff model?. Part 1—Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? , 2005 .
[5] M. Bakalowicz. Karst groundwater: a challenge for new resources , 2005 .
[6] H.-G. Wenzel,et al. The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .
[7] R. Reilinger,et al. A snapshot (2003–2005) of the 3D postseismic deformation for the 1999, Mw = 7.4 İzmit earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring , 2007 .
[8] M. Harnisch,et al. Hydrological influences in long gravimetric data series , 2006 .
[9] T. James,et al. New constraints on Laurentide postglacial rebound from absolute gravity measurements , 2001 .
[10] M. Vanclooster,et al. Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations , 2006 .
[11] J. Faller,et al. A Portable Apparatus for Absolute Measurements of the Earth's Gravity , 1982 .
[12] L. S. Pereira,et al. Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .
[13] T. Jahr,et al. Hydrological experiments around the superconducting gravimeter at Moxa Observatory , 2006 .
[14] Y. Imanishi,et al. Effect of underground water on gravity observation at Matsushiro, Japan , 2006 .
[15] Dennis L. Harry,et al. Estimating specific yield and storage change in an unconfined aquifer using temporal gravity surveys , 2009 .
[16] Timothy M. Niebauer,et al. A new generation of absolute gravimeters , 1995 .
[17] D. Carbone,et al. Potential application of the Scintrex CG-3M gravimeter for monitoring volcanic activity: results of field trials on Mt. Etna, Sicily , 1997 .
[18] Y. Fukuda,et al. Hydrological effects on the superconducting gravimeter observation in Bandung , 2006 .
[19] Pedro Viterbo,et al. An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .
[20] M. Camp,et al. Correcting superconducting gravity time-series using rainfall modelling at the Vienna and Membach stations and application to Earth tide analysis , 2007 .
[21] L. Timmen. Precise definition of the effective measurement height of free-fall absolute gravimeters , 2003 .
[22] C. Hwang,et al. Adjustment of relative gravity measurements using weighted and datum-free constraints , 2002 .
[23] J. Ferguson,et al. The 4D microgravity method for waterflood surveillance: Part 3 — 4D absolute microgravity surveys at Prudhoe Bay, Alaska , 2008 .
[24] J. Chéry,et al. Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity , 2009 .
[25] P. Jousset,et al. Performance of two Scintrex CG3M instruments at the fourth International Comparison of Absolute Gravimeters , 1995 .
[26] J. Chéry,et al. Absolute gravity monitoring of water storage variation in a karst aquifer on the larzac plateau (Southern France) , 2008 .
[27] C. Braitenberg,et al. The very-broad-band long-base tiltmeters of Grotta Gigante (Trieste, Italy): Secular term tilting and the great Sumatra-Andaman islands earthquake of December 26, 2004 , 2006 .
[28] K. Larson,et al. Measuring postglacial rebound with GPS and absolute gravity , 2000 .
[29] F. Beauducel,et al. Temporal gravity at Merapi during the 1993–1995 crisis: an insight into the dynamical behaviour of volcanoes , 2000 .
[30] A. Mangin. Contribution à l'étude hydrodynamique des aquifères karstiques , 1975 .
[31] M. Ruymbeke,et al. Karst aquifer investigation using absolute gravity , 2006 .
[32] O. Francis,et al. Uncertainty of absolute gravity measurements , 2005 .
[33] Wenke Sun,et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement , 2002 .
[34] P. Fleury,et al. Caractérisation d'un système karstique à exutoire sous-marin : exemple de la mortola (Italie) , 2007 .
[35] W. Prothero,et al. The superconducting gravimeter , 1968 .
[36] T. Jahr,et al. Detection of small hydrological variations in gravity by repeated observations with relative gravimeters , 2008 .
[37] J. Hinderer,et al. Time Variations In Gravity And Inferences On The Earth's Structure And Dynamics , 2000 .
[38] B. Dewandel,et al. Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer , 2003 .
[39] C. Beaumont,et al. Nano variations in gravity due to seasonal groundwater movements: Implications for the gravitational detection of tectonic movements , 1977 .
[40] D. Remy,et al. Insights on the March 1998 eruption at Piton de la Fournaise volcano (La Réunion) from microgravity monitoring , 2008 .
[41] Michel Bakalowicz,et al. Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France) , 2007 .
[42] D. Pool,et al. Measurements of Aquifer‐Storage Change and Specific Yield Using Gravity Surveys , 1995 .
[43] Laurent Bruxelles. Dépôts et altérites des plateaux du Larzac central : Causses de l'Hospitalet et de Campestre (Aveyron, Gard, Hérault). Evolution morphogénétique, conséquences géologiques et implications pour l'aménagement. , 2001 .
[44] F. Dupont,et al. Some critical factors for engineering and environmental microgravity investigations , 2002 .
[45] Laurent Bruxelles. Reconstitution morphologique du Larzac (Larzac central, Aveyron, France) : le rôle des formations superficielles , 2001 .
[46] P. Perrochet,et al. A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis , 2005 .
[47] S. Tattari,et al. Soil moisture and groundwater: two sources of gravity variations , 1988 .
[48] V. Ballu,et al. 1985–1999 gravity field variations across the Asal Rift: insights on vertical movements and mass transfer , 2003 .
[49] D. R. Bower,et al. Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site , 1998 .
[50] Timothy M. Niebauer,et al. The Effective Measurement Height of Free-fall Absolute Gravimeters , 1989 .
[51] J. Boy,et al. Time variation of the European gravity field from superconducting gravimeters , 2005 .
[52] Victor Zlotnicki,et al. Time‐variable gravity from GRACE: First results , 2004 .
[53] H. L. Penman. Natural evaporation from open water, bare soil and grass , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[54] Y. Tamura. A harmonic development of the tide-generating potential , 1987 .
[55] Jennifer L. Hare,et al. The 4-D microgravity method for waterflood surveillance: A model study for the Prudhoe Bay reservoir, Alaska , 1999 .
[56] R. Warnant,et al. Indication of the uplift of the Ardenne in long‐term gravity variations in Membach (Belgium) , 2004 .
[57] O. Francis,et al. Modelling the global ocean tides: modern insights from FES2004 , 2006 .
[58] Sébastien Merlet,et al. Micro-gravity investigations for the LNE watt balance project , 2008 .
[59] J. Boy,et al. Study of the seasonal gravity signal in superconducting gravimeter data , 2006 .
[60] John F. Ferguson,et al. The 4D microgravity method for waterflood surveillance: Part II - Gravity measurements for the Prudhoe Bay reservoir, Alaska , 2007 .