Mixture of random walk solution and quasi-random walk solution to global illumination

Conventional Monte Carlo methods are often used to solve some hard second kind Fredholm integral equations such as the difficult global illumination problems due to its dimensional independence. However, the convergence rate of the quasi-Monte Carlo methods for numerical integration is superior to that of the Monte Carlo methods. We present two mixed strategies that make use of both the statistical properties of random numbers and the uniformity properties of quasi-random numbers to build up walk histories for solving the global illumination. In the framework of the proposed strategies, experimental results have been obtained from rendering the test scenes. The computations indicate that the mixed strategies can outperform Monte Carlo or quasi-Monte Carlo used alone.

[1]  Werner Purgathofer,et al.  Importance driven quasi-random walk solution of the rendering equation , 1999, Comput. Graph..

[2]  Jerome Spanier,et al.  Quasi-Monte Carlo Methods for Particle Transport Problems , 1995 .

[3]  Paula A. Whitlock,et al.  Monte Carlo methods. Vol. 1: basics , 1986 .

[4]  Sumanta N. Pattanaik,et al.  The Potential Equation and Importance in Illumination Computations , 1993, Comput. Graph. Forum.

[5]  Mateu Sbert,et al.  Quasi Monte-Carlo and extended first shot improvements to the multi-path method , 1998 .

[6]  László Szirmay-Kalos,et al.  Monte-Carlo Global Illumination Methods State of the Art and New Developments , 2000 .

[7]  Werner Purgathofer,et al.  Analysis of the Quasi-Monte Carlo Integration of the Rendering Equation , 1998 .

[8]  Ryutarou Ohbuchi,et al.  Quasi-Monte Carlo rendering with adaptive sampling , 1996 .

[9]  Sumanta N. Pattanaik,et al.  Adjoint equations and random walks for illumination computation , 1995, TOGS.

[10]  James T. Kajiya,et al.  The rendering equation , 1998 .

[11]  László Neumann,et al.  Radiosity with Well Distributed Ray Sets , 1997, Comput. Graph. Forum.

[12]  A. Keller A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting , 1995 .

[13]  James Arvo,et al.  Particle transport and image synthesis , 1990, SIGGRAPH.

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[16]  Liming Li,et al.  Quasi-Monte Carlo Methods for Integral Equations , 1998 .

[17]  Alexander Keller Quasi-Monte Carlo Radiosity , 1996, Rendering Techniques.

[18]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[19]  László Szirmay-Kalos,et al.  An Analysis of Quasi‐Monte Carlo Integration Applied to the Transillumination Radiosity Method , 1997 .

[20]  Philippe Bekaert,et al.  Hierarchical and stochastic algorithms for radiosity , 1999 .