Delone dynamical systems and associated random operators

We carry out a careful study of basic topological and ergodic features of Delone dynamical systems. We then investigate the associated topological groupoids and in particular their representations on certain direct integrals with non constant fibres. Via non-commutative-integration theory these representations give rise to von Neumann algebras of random operators. Features of these algebras and operators are discussed. Restricting our attention to a certain subalgebra of tight binding operators, we then discuss a Shubin trace formula.

[1]  D. Lenz,et al.  An ergodic theorem for Delone dynamical systems and existence of the integrated density of states , 2003, math-ph/0310017.

[2]  D. Lenz,et al.  Algebras of Random Operators Associated to Delone Dynamical Systems , 2002, math-ph/0210031.

[3]  Boris Solomyak,et al.  Pure Point Dynamical and Diffraction Spectra , 2002, 0910.4809.

[4]  D. Lenz,et al.  Digital Object Identifier (DOI) 10.1007/s00220-003-0920-7 Mathematical Physics Discontinuities of the Integrated Density of States for Random Operators on Delone Sets ⋆ , 2002 .

[5]  N. Peyerimhoff,et al.  Groupoids, von Neumann Algebras and the Integrated Density of States , 2002, math-ph/0203026.

[6]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[7]  M. Baake,et al.  Generalized model sets and dynamical systems , 2000 .

[8]  Michael Baake,et al.  Hulls of aperiodic solids and gap labeling theorems , 2000 .

[9]  I. Putnam The Ordered K-Theory of C/*-Algebras¶Associated with Substitution Tilings , 2000 .

[10]  P. Pleasants,et al.  Repetitive Delone sets and quasicrystals , 1999, Ergodic Theory and Dynamical Systems.

[11]  D. Lenz Random Operators and Crossed Products , 1999, math-ph/9902030.

[12]  B. Solomyak,et al.  Spectrum of dynamical systems arising from Delone sets , 1998 .

[13]  I. Putnam,et al.  Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.

[14]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[15]  A. Hof A remark on Schrödinger operators on aperiodic tilings , 1995 .

[16]  J. Kellendonk The Local Structure of Tilings and Their Integer Group of Coinvariants , 1995, cond-mat/9508010.

[17]  J. Kellendonk NONCOMMUTATIVE GEOMETRY OF TILINGS AND GAP LABELLING , 1994, cond-mat/9403065.

[18]  A. Hof Some remarks on discrete aperiodic Schrödinger operators , 1993 .

[19]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[20]  A. Hof,et al.  LATTICE GAS MODELS ON SELF-SIMILAR APERIODIC TILINGS , 1991 .

[21]  John W. Cahn,et al.  Metallic Phase with Long-Range Orientational Order and No Translational Symmetry , 1984 .

[22]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[23]  B. Simon,et al.  Almost periodic Schrödinger operators , 1981 .

[24]  M. Shubin THE SPECTRAL THEORY AND THE INDEX OF ELLIPTIC OPERATORS WITH ALMOST PERIODIC COEFFICIENTS , 1979 .

[25]  I. Singer,et al.  C*-algebras of almost periodic pseudo-differential operators , 1973 .

[26]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals I. Delone Sets of Finite Type , 1999, Discret. Comput. Geom..

[27]  Jeffrey C. Lagarias,et al.  Geometric Models for Quasicrystals II. Local Rules Under Isometries , 1999, Discret. Comput. Geom..

[28]  P. Paufler,et al.  Quasicrystals and Geometry , 1997 .

[29]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[30]  J. Bellissard Gap labeling theorems for Schrodinger operators , 1990 .

[31]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[32]  J. Bellissard K-theory of C*—Algebras in solid state physics , 1986 .

[33]  T. C. Dorlas,et al.  Statistical Mechanics and Field Theory: Mathematical Aspects , 1986 .

[34]  A. Connes Sur la theorie non commutative de l’integration , 1979 .