On combinatorial differential equations

Abstract We analyse the solution set of first-order initial value differential problems of the form dy dx = ƒ(x, y), y(0) = 0 in the context of combinatorial species in the sense of A. Joyal ( Adv. in Math. 42 (1981), 1–82). It turns out that the situation is much richer than in the case of formal power series: many non-isomorphic combinatorial solutions are possible for a given problem, although they all have the same underlying generating series. We give many examples of this phenomenon and also elaborate a combinatorial Newton-Raphson iterative scheme for the construction of the solutions. The multidimensional case is treated explicitly.

[1]  Oscar Nierstrasz,et al.  A combinatorial application of matrix Riccati equations and their q-analogue , 1981, Discret. Math..

[2]  Ian P. Goulden,et al.  THE HAMMOND SERIES OF A SYMMETRIC FUNCTION AND ITS APPLICATION TO P-RECURSIVENESS* , 1983 .

[3]  Dominique Dumont,et al.  Une approche combinatoire des fonctions elliptiques de Jacobi , 1981 .

[4]  R. Carmichael,et al.  Introduction to the theory of groups of finite order , 1908 .

[5]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[6]  Gérard Viennot,et al.  Combinatorial resolution of systems of differential equations, I. Ordinary differential equations , 1986 .

[7]  Richard P. Stanley,et al.  Differentiably Finite Power Series , 1980, Eur. J. Comb..

[8]  Gilbert Labelle,et al.  Une approche combinatoire pour l'itération de Newton - Raphson , 1982 .

[9]  Gilbert Labelle Éclosions combinatoires appliquées à l'inversion multidimensionnelle des séries formelles , 1985, J. Comb. Theory, Ser. A.

[10]  A. Lunn,et al.  Isomerism and Configuration , 1928 .

[11]  Gérard Viennot,et al.  Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi , 1980, J. Comb. Theory, Ser. A.

[12]  G. Butler,et al.  The transitive groups of degree up to eleven , 1983 .

[13]  Frank Harary,et al.  Graph Theory , 2016 .

[14]  A. Nijenhuis Combinatorial algorithms , 1975 .

[15]  S. Lane Categories for the Working Mathematician , 1971 .

[16]  Gilbert Labelle,et al.  Une combinatoire sous-jacente au théorème des fonctions implicites , 1985, J. Comb. Theory, Ser. A.

[17]  Gilbert Labelle,et al.  Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange , 1981 .

[18]  W. Gröbner,et al.  Die Lie-Reihen und ihre Anwendungen , 1960 .

[19]  Richard H. Rand,et al.  Computer algebra in applied mathematics: An introduction to MACSYMA , 1984 .