On the Use of Policy Iteration as an Easy Way of Pricing American Options
暂无分享,去创建一个
[1] P. Forsyth,et al. Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .
[2] A. Boriçi,et al. Fast Solutions of Complementarity Formulations in American Put Pricing , 2005 .
[3] Angela Kunoth,et al. B-Spline-Based Monotone Multigrid Methods , 2007, SIAM J. Numer. Anal..
[4] Ralf Kornhuber,et al. Multigrid Methods for Obstacle Problems , 2008 .
[5] G. Dantzig,et al. COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .
[6] R. Hoppe. Multigrid Algorithms for Variational Inequalities , 1987 .
[7] R. Bellman,et al. Dynamic Programming and Markov Processes , 1960 .
[8] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[9] Walter Allegretto,et al. Finite Element Error Estimates for a Nonlocal Problem in American Option Valuation , 2001, SIAM J. Numer. Anal..
[10] C. Cryer. The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .
[11] Paul Wilmott,et al. Paul Wilmott Introduces Quantitative Finance , 2000 .
[12] G. Meyer,et al. The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .
[13] Christoph Reisinger,et al. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..
[14] Jari Toivanen,et al. Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.
[15] George Labahn,et al. Inexact arithmetic considerations for direct control and penalty methods: American options under jump diffusion , 2013 .
[16] M. Fiedler. Special matrices and their applications in numerical mathematics , 1986 .
[17] Hasnaa Zidani,et al. Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..
[18] Guy Barles,et al. CRITICAL STOCK PRICE NEAR EXPIRATION , 1995 .
[19] Gabriel Wittum,et al. On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .
[20] P. Wilmott,et al. Option pricing: Mathematical models and computation , 1994 .
[21] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[22] John van der Hoek,et al. The valuation of American options with the method of lines , 1997 .
[23] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[24] Kazufumi Ito,et al. Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .
[25] I. Gladwell,et al. A Survey of Numerical Methods for Partial Differential Equations , 2021, An Introduction to Numerical Methods and Analysis.
[26] S. Shreve. Stochastic calculus for finance , 2004 .
[27] Eduardo S. Schwartz,et al. The Valuation of American Put Options , 1977 .
[28] Frank Cuypers. Tools for Computational Finance , 2003 .
[29] B. Ahn. Solution of nonsymmetric linear complementarity problems by iterative methods , 1981 .
[30] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[31] Sam D. Howison,et al. The Effect of Nonsmooth Payoffs on the Penalty Approximation of American Options , 2010, SIAM J. Financial Math..
[32] Valuing Foreign Currency Options with a Mean-Reverting Process: A Study of Hong Kong Dollar , 2008 .
[33] Dawn Hunter,et al. Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .
[34] C. M. Elliott,et al. Weak and variational methods for moving boundary problems , 1982 .