On the Use of Policy Iteration as an Easy Way of Pricing American Options

In this paper, we demonstrate that policy iteration, introduced in the context of HJB equations in [P. A. Forsyth and G. Labahn, J. Comput. Finance, 11 (2007), pp. 1--44], is an extremely simple generic algorithm for solving linear complementarity problems (LCPs) resulting from the finite difference and finite element approximation of American options. We show that, in general, $O(N)$ is an upper and a lower bound on the number of iterations needed to solve a discrete LCP of size $N$. If embedded in a class of standard discretizations with $M$ time steps, the overall complexity of American option pricing is indeed only $O(N(M+N))$, and, therefore, for $M\sim N$, it is identical to the pricing of European options, which is $O(MN)$. We also discuss the numerical properties and robustness with respect to model parameters in relation to penalty and projected relaxation methods.

[1]  P. Forsyth,et al.  Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .

[2]  A. Boriçi,et al.  Fast Solutions of Complementarity Formulations in American Put Pricing , 2005 .

[3]  Angela Kunoth,et al.  B-Spline-Based Monotone Multigrid Methods , 2007, SIAM J. Numer. Anal..

[4]  Ralf Kornhuber,et al.  Multigrid Methods for Obstacle Problems , 2008 .

[5]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[6]  R. Hoppe Multigrid Algorithms for Variational Inequalities , 1987 .

[7]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[8]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[9]  Walter Allegretto,et al.  Finite Element Error Estimates for a Nonlocal Problem in American Option Valuation , 2001, SIAM J. Numer. Anal..

[10]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[11]  Paul Wilmott,et al.  Paul Wilmott Introduces Quantitative Finance , 2000 .

[12]  G. Meyer,et al.  The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .

[13]  Christoph Reisinger,et al.  A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..

[14]  Jari Toivanen,et al.  Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.

[15]  George Labahn,et al.  Inexact arithmetic considerations for direct control and penalty methods: American options under jump diffusion , 2013 .

[16]  M. Fiedler Special matrices and their applications in numerical mathematics , 1986 .

[17]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..

[18]  Guy Barles,et al.  CRITICAL STOCK PRICE NEAR EXPIRATION , 1995 .

[19]  Gabriel Wittum,et al.  On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .

[20]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[21]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[22]  John van der Hoek,et al.  The valuation of American options with the method of lines , 1997 .

[23]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[24]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[25]  I. Gladwell,et al.  A Survey of Numerical Methods for Partial Differential Equations , 2021, An Introduction to Numerical Methods and Analysis.

[26]  S. Shreve Stochastic calculus for finance , 2004 .

[27]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[28]  Frank Cuypers Tools for Computational Finance , 2003 .

[29]  B. Ahn Solution of nonsymmetric linear complementarity problems by iterative methods , 1981 .

[30]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[31]  Sam D. Howison,et al.  The Effect of Nonsmooth Payoffs on the Penalty Approximation of American Options , 2010, SIAM J. Financial Math..

[32]  Valuing Foreign Currency Options with a Mean-Reverting Process: A Study of Hong Kong Dollar , 2008 .

[33]  Dawn Hunter,et al.  Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .

[34]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .