Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors

In this Letter, an innovative technique is reported to control the fabrication of free-standing MnO2 nanotube and nanowire arrays. The synthesis is based on a three-step process, using porous anodic aluminum oxide as a template, and enables the selective fabrication of vertically aligned MnO2 nanotubes or nanowires on large areas. The as-prepared MnO2 nanotube and nanowire arrays are investigated as electrode materials for supercapacitor applications and show a good electrochemical performance with specific capacitances of 210 F g−1 at 1.9 A g−1 and 231 F g−1 at 0.5 A g−1, respectively. The investigation of the rate capability of both structures indicates a superior performance of the nanotube arrays.

[1]  Xiaodong Li,et al.  Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. , 2011, Nano letters.

[2]  Dmitri Golberg,et al.  Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors , 2013, Nature Communications.

[3]  G. Campet,et al.  Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins , 2007 .

[4]  Zengling Wang,et al.  Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure , 2011 .

[5]  Michelle V. Buchanan,et al.  Basic Research Needs for Electrical Energy Storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2-4, 2007 , 2007 .

[6]  Xiong Zhang,et al.  Shape-Controlled Synthesis of 3D Hierarchical MnO2 Nanostructures for Electrochemical Supercapacitors , 2009 .

[7]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[8]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[9]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[10]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[11]  Zexiang Shen,et al.  Synthesis of Single-Crystal Tetragonal α-MnO2 Nanotubes , 2008 .

[12]  Hao Jiang,et al.  Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. , 2011, Chemical communications.

[13]  Lide Zhang,et al.  Preparation of highly ordered nanoporous Co membranes assembled by small quantum-sized Co particles , 2001 .

[14]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[15]  Xin Wang,et al.  Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties , 2009 .

[16]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[17]  Yi Xie,et al.  Fabrication of flexible and freestanding zinc chalcogenide single layers , 2012, Nature Communications.

[18]  D. Banerjee,et al.  Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation , 1998 .

[19]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[20]  Yi Xie,et al.  Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. , 2012, Angewandte Chemie.

[21]  Mao-Sung Wu,et al.  Field Emission from Manganese Oxide Nanotubes Synthesized by Cyclic Voltammetric Electrodeposition , 2004 .

[22]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[23]  Minghong Wu,et al.  Ordered Arrays of Nanostructures and Applications in High‐Efficient Nano‐Generators , 2007 .

[24]  Shi Xue Dou,et al.  Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors , 2008 .

[25]  Li Lu,et al.  MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors , 2010 .

[26]  Mario Conte,et al.  Supercapacitors Technical Requirements for New Applications , 2010 .

[27]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[28]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[29]  Minghong Wu,et al.  Ultrathin alumina membranes for surface nanopatterning in fabricating quantum-sized nanodots. , 2010, Small.

[30]  Ling-Bin Kong,et al.  Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor , 2006 .

[31]  P.H. Chou,et al.  Efficient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes , 2008, IEEE Transactions on Power Electronics.

[32]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[33]  Y. Lei,et al.  Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates , 2005 .

[34]  M. Armand,et al.  Building better batteries , 2008, Nature.

[35]  F. Kang,et al.  A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies , 2013 .

[36]  Kentaro Kuratani,et al.  Manganese Oxide Nanorod with 2 × 4 Tunnel Structure: Synthesis and Electrochemical Properties , 2007 .

[37]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[38]  Yong Jiang,et al.  Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation , 2013, Nature Communications.

[39]  Li Lu,et al.  Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties , 2009 .