Unexpected power-law stress relaxation of entangled ring polymers.
暂无分享,去创建一个
D Richter | D. Vlassopoulos | M. Rubinstein | D. Richter | W. Pyckhout-Hintzen | M Kapnistos | M Lang | D Vlassopoulos | W Pyckhout-Hintzen | D Cho | T Chang | M Rubinstein | M. Lang | T. Chang | M. Kapnistos | D. Cho | T. Chang | D. Cho
[1] Rae M. Robertson,et al. Strong effects of molecular topology on diffusion of entangled DNA molecules , 2007, Proceedings of the National Academy of Sciences.
[2] T. McLeish. Hierarchical Relaxation in Tube Models of Branched Polymers , 1988 .
[3] Hyunjung Lee,et al. Fractionation of Cyclic Polystyrene from Linear Precursor by HPLC at the Chromatographic Critical Condition , 2000 .
[4] J. Hinkley,et al. Mechanical and swelling behaviour of well characterized polybutadiene networks , 1986 .
[5] Grosberg. Critical exponents for random knots , 1999, Physical review letters.
[6] K.F. Schoch,et al. Standard Pressure-volume-temperature data for Polymers , 1996, IEEE Electrical Insulation Magazine.
[7] T. Nagamura,et al. Comparison of Interdiffusion Behavior between Cyclic and Linear Polystyrenes with High Molecular Weights , 2006 .
[8] T. McLeish. Polymers Without Beginning or End , 2002, Science.
[9] R. Grubbs,et al. An "Endless" Route to Cyclic Polymers , 2002, Science.
[10] T. McLeish. Why, and when, does dynamic tube dilation work for stars? , 2003 .
[11] G. Hadziioannou,et al. Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt , 1987 .
[12] Limits of analogy between self-avoidance and topology-driven swelling of polymer loops. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] S. Edwards,et al. The Theory of Polymer Dynamics , 1986 .
[14] J. Klein. Dynamics of entangled linear, branched, and cyclic polymers , 1986 .
[15] G. McKenna,et al. The viscosity of blends of linear and cyclic molecules of similar molecular mass , 1986 .
[16] G. Szamel,et al. Influence of topological constraints on the statics and dynamics of ring polymers. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] M. Huggins. Viscoelastic Properties of Polymers. , 1961 .
[18] S. Shanbhag,et al. What Is the Size of a Ring Polymer in a Ring−Linear Blend? , 2007 .
[19] Obukhov,et al. Dynamics of a ring polymer in a gel. , 1994, Physical review letters.
[20] Michael Rubinstein,et al. Network Modulus and Superelasticity , 1994 .
[21] J. A. Semlyen,et al. Studies of cyclic and linear poly(dimethylsiloxanes): 34: Preparation, fractionation and characterisation of the first per-deuterated macrocyclic poly(dimethylsiloxanes) , 1999 .
[22] J. Roovers. Viscoelastic properties of polybutadiene rings , 1988 .
[23] J. E. Mark,et al. Physical properties of polymers handbook , 2007 .
[24] Philip J. Cox,et al. Physical properties of polymers handbook , 1997 .
[25] J. A. Semlyen,et al. Studies of cyclic and linear poly(dimethylsiloxanes): 27. Bulk viscosities above the critical molar mass for entanglement , 1988 .
[26] C. Strazielle,et al. Cyclic macromolecules. Synthesis and characterization of ring-shaped polystyrenes , 1983 .
[27] M. Rubinstein,et al. Dynamics of ring polymers in the presence of fixed obstacles. , 1986, Physical review letters.
[28] M. Isichenko. Percolation, statistical topography, and transport in random media , 1992 .
[29] P. Gennes. Reptation of a Polymer Chain in the Presence of Fixed Obstacles , 1971 .
[30] J. Roovers. The melt properties of ring polystyrenes , 1985 .
[31] S G Whittington,et al. Statistical topology of closed curves: Some applications in polymer physics , 2007 .
[32] D. Vlassopoulos,et al. Linear Melt Rheology of Pom-Pom Polystyrenes with Unentangled Branches , 2007 .
[33] D. J. Walsh,et al. Standard Pressure Volume Temperature Data for Polymers , 1995 .
[34] S. Edwards,et al. Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state , 1978 .
[35] P. Gennes. Reptation of stars , 1975 .
[36] J. A. Semlyen. Cyclic polymers , 1981 .
[37] Wittmer,et al. Topological effects in ring polymers: A computer simulation study. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[38] B. Trathnigg,et al. Hplc of Polymers , 1998 .
[39] N. Hadjichristidis,et al. A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements , 1989 .
[40] T. C. B. McLeish,et al. Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.
[41] P. E. Rouse. A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers , 1953 .
[42] J. Viovy,et al. Constraint release in polymer melts: tube reorganization versus tube dilation , 1991 .
[43] G. Marrucci. Relaxation by reptation and tube enlargement: A model for polydisperse polymers , 1985 .
[44] J. M. Deutsch,et al. Conjectures on the statistics of ring polymers , 1986 .
[45] J. Roovers,et al. Synthesis of high molecular weight ring polystyrenes , 1983 .
[46] M. Doi,et al. Rheology of star polymers in concentrated solutions and melts , 1980 .
[47] E. Kramer,et al. Diffusion of polymer rings in linear polymer matrices , 1987 .
[48] Muthukumar,et al. Knottedness in ring polymers. , 1991, Physical review letters.
[49] J. Roovers,et al. Synthesis and characterization of ring polybutadienes , 1988 .
[50] S. Nechaev,et al. Dynamics of a polymer chain in an array of obstacles , 1987 .